INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL

A control-based observer approach for estimating energy intake during pregnancy
Ranghetti L, Rivera DE, Guo P, Visioli A, Savage JS and Symons Downs D
Gestational weight gain outside of Institute of Medicine guidelines poses a risk to both the mother and her unborn child. Behavioral interventions such as (HMZ) that aim to regulate gestational weight gain require self-monitoring of energy intake, which is often significantly under-reported by participants. This paper describes the use of a control systems approach for energy intake estimation during pregnancy. It relies on an energy balance model that predicts gestational weight based on physical activity and energy intake, the latter treated as an unmeasured disturbance. Two control-based observer formulations relying on Internal Model Control and Model Predictive Control, respectively, are presented in this paper, first for a hypothetical participant, then on data collected from four HMZ participants. Results demonstrate the effectiveness of the method, with generally best results obtained when estimating energy intake over a weekly time period.
The generalized super-twisting algorithm with adaptive gains
Borlaug IG, Pettersen KY and Gravdahl JT
In this article, a novel adaptive generalized super-twisting algorithm (GSTA) is proposed for a class of systems whose perturbations and uncertain control coefficients may depend on both time and state. The proposed approach uses dynamically adapted control gains, and it is proven that this ensures global finite-time convergence. A nonsmooth strict Lyapunov function is used to obtain the conditions for global finite-time stability. A simulation and experimental case study is performed using an articulated intervention autonomous underwater vehicle (AIAUV). It is also shown that the adaptive GSTA causes the tracking errors of the AIAUV to converge to zero in finite time. In the case study, we use the singularity-robust multiple task-priority method to create a continuous trajectory for the AIAUV to follow. The simulation and experimental results validate and verify that the proposed approach is well suited for controlling an AIAUV. We also perform a comparison with the super-twisting algorithm with adaptive gains and the original GSTA to evaluate whether adding adaptive gains to the GSTA actually improves the tracking capabilities by combining the theoretical advantages afforded by the GSTA with the practical advantages afforded by adaptive gains. Based on this comparison, the adaptive GSTA yields the best tracking results overall without increasing the energy consumption, and the simulations and experiments thus indicate that adding adaptive gains to the GSTA does indeed improve the consequent tracking results and capabilities.
LPV modeling of nonlinear systems: A multi-path feedback linearization approach
Abbas HS, Tóth R, Petreczky M, Meskin N, Mohammadpour Velni J and Koelewijn PJW
This article introduces a systematic approach to synthesize linear parameter-varying (LPV) representations of nonlinear (NL) systems which are described by input affine state-space (SS) representations. The conversion approach results in LPV-SS representations in the observable canonical form. Based on the relative degree concept, first the SS description of a given NL representation is transformed to a normal form. In the SISO case, all nonlinearities of the original system are embedded into one NL function, which is factorized, based on a proposed algorithm, to construct an LPV representation of the original NL system. The overall procedure yields an LPV model in which the scheduling variable depends on the inputs and outputs of the system and their derivatives, achieving a practically applicable transformation of the model in case of low order derivatives. In addition, if the states of the NL model can be measured or estimated, then a modified procedure is proposed to provide LPV models scheduled by these states. Examples are included to demonstrate both approaches.
Data-enabled predictive control for quadcopters
Elokda E, Coulson J, Beuchat PN, Lygeros J and Dörfler F
We study the application of a data-enabled predictive control (DeePC) algorithm for position control of real-world nano-quadcopters. The DeePC algorithm is a finite-horizon, optimal control method that uses input/output measurements from the system to predict future trajectories without the need for system identification or state estimation. The algorithm predicts future trajectories of the quadcopter by linearly combining previously measured trajectories (motion primitives). We illustrate the necessity of a regularized variant of the DeePC algorithm to handle the nonlinear nature of the real-world quadcopter dynamics with noisy measurements. Simulation-based analysis is used to gain insights into the effects of regularization, and experimental results validate that these insights carry over to the real-world quadcopter. Moreover, we demonstrate the reliability of the DeePC algorithm by collecting a new set of input/output measurements for every real-world experiment performed. The performance of the DeePC algorithm is compared to Model Predictive Control based on a first-principles model of the quadcopter. The results are demonstrated with a video of successful trajectory tracking of the real-world quadcopter.
A model predictive control approach to optimally devise a two-dose vaccination rollout: A case study on COVID-19 in Italy
Parino F, Zino L, Calafiore GC and Rizzo A
The COVID-19 pandemic has led to the unprecedented challenge of devising massive vaccination rollouts, toward slowing down and eventually extinguishing the diffusion of the virus. The two-dose vaccination procedure, speed requirements, and the scarcity of doses, suitable spaces, and personnel, make the optimal design of such rollouts a complex problem. Mathematical modeling, which has already proved to be determinant in the early phases of the pandemic, can again be a powerful tool to assist public health authorities in optimally planning the vaccination rollout. Here, we propose a novel epidemic model tailored to COVID-19, which includes the effect of nonpharmaceutical interventions and a concurrent two-dose vaccination campaign. Then, we leverage nonlinear model predictive control to devise optimal scheduling of first and second doses, accounting both for the healthcare needs and for the socio-economic costs associated with the epidemics. We calibrate our model to the 2021 COVID-19 vaccination campaign in Italy. Specifically, once identified the epidemic parameters from officially reported data, we numerically assess the effectiveness of the obtained optimal vaccination rollouts for the two most used vaccines. Determining the optimal vaccination strategy is nontrivial, as it depends on the efficacy and duration of the first-dose partial immunization, whereby the prioritization of first doses and the delay of second doses may be effective for vaccines with sufficiently strong first-dose immunization. Our model and optimization approach provide a flexible tool that can be adopted to help devise the current COVID-19 vaccination campaign, and increase preparedness for future epidemics.
Identification of switched autoregressive exogenous systems from large noisy datasets
Hojjatinia S, Lagoa CM and Dabbene F
The article introduces novel methodologies for the identification of coefficients of switching autoregressive moving average with exogenous input systems and switched autoregressive exogenous linear models. We consider cases where system's outputs are contaminated by possibly large values of noise for both cases of measurement noise and process noise. It is assumed that only partial information on the probability distribution of the noise is available. Given input-output data, we aim at identifying switched system coefficients and parameters of the distribution of the noise, which are compatible with the collected data. We demonstrate the efficiency of the proposed approach with several academic examples. The method is shown to be effective in the situations where a large number of measurements is available; cases in which previous approaches based on polynomial or mixed-integer optimization cannot he applied due to very large computational burden.