A structured review of the associations between breast cancer and exposures to selected organic solvents
Our objective was to identify published, peer-reviewed, epidemiological studies that estimated associations between the risk of developing or dying from malignant breast cancer and past exposure to selected organic solvents with reactive metabolites, to delineate the methods used and to synthesize the results.
Adapting to heat-health vulnerability in temperate climates: current adaptation and mitigation responses and future predictions in Aotearoa New Zealand
Climate change is raising global temperatures, leading to more extreme heat events, even in temperate climates like Aotearoa|New Zealand (A|NZ). The impact of rising temperatures and the adequacy of planning measures remain underexplored. This paper highlights A|NZ's anticipated heat-health challenges by analyzing vulnerable populations and assessing current response systems, thereby reinforcing the need for system-level redress, mitigation and adaptation.
Comprehensive approach to clinical decision-making strategy, illustrated by the Gulf War
Throughout the history of medicine, clinical decision-making strategies have largely been dependent on the implementation of novel technologies. Artificial intelligence (AI) has not only made a leap into a new dimension of medical measures & decisions' shaping but has also served as a strategic backup of medical practice. Due to its nature, and military technologies in use, the Gulf War (1990-1991) is considered to be the verge of the contemporary warfare era. Soldiers had been engaged into a highly complex military operation theatre contaminated with both chemical and radiological noxious agents, and burdened with side-effects of prophylactic measurements. The aim of this review is to present a comprehensive approach to clinical decision-making strategy using the Gulf War veterans' syndrome as an example. The model is based on the processing of all data coming from the military operation theatre and their unification with medical data, so as to obtain the final product, i.e., the decision needed for a personalised therapeutic approach. Due to the complexity and a huge amount of data gathered at a given location in a given time, the functioning of this model unanimously calls for the interlace between military system AI and that of the medical sector.
A systematic review and quality assessment of estimated daily intake of microplastics through food
Plastic waste enters the oceans and soil and is consumed by organisms and humans. Some of the ingested microplastics may remain in the human body and cause toxicity. We conducted a systematic review to estimate the extent to which humans are exposed to microplastics through consumption and performed a quality assessment of research results. We searched for studies published up to December 2023 and included studies that reported on the characteristics and estimated intake of microplastics. The quality assessment tool reported in previous studies was used for food and drinking water studies. We included 76 studies in the analysis, and the types of foods were classified into seven categories: seafood, drinking water, table salt, fruits and vegetables, beverages, condiments, and meat. The estimated daily intake of microplastics via food was 0.0002-1,531,524 MP/day, with the highest value in bottled water. The quality of food and drinking water studies was evaluated using a quantitative tool to assess reliability. The quality of food studies was 11.50 out of 20 points and the quality of drinking water studies was 11.16 out of 19 points. These results indicate that the closer the score is to the maximum, the more reliable the research findings. The quantitative assessment can be used as an indicator for evaluating the risks of microplastics and can help reduce biases that may occur during the research process. This study confirmed microplastics in foods and human exposure to up to one million microplastics daily. Our study emphasizes the potential for microplastic exposure through food intake and subsequent accumulation in the human body; therefore, efforts are needed to reduce exposure to microplastics in daily life.
Semi-IPN polysaccharide-based hydrogels for effective removal of heavy metal ions and dyes from wastewater: a comprehensive investigation of performance and adsorption mechanism
The escalating issue of environmental pollutants necessitates efficient, sustainable, and innovative wastewater treatment technologies. This review comprehensively analyzes the mechanisms and isotherms underlying the adsorption processes of semi-interpenetrating polymer network (semi-IPN) polysaccharide-based hydrogels to remove heavy metal ions and dyes from wastewater. Polysaccharides are extensively utilized in hydrogel synthesis due to their biocompatibility, cost-effectiveness, and non-toxic nature. The synthesis of these hydrogels as semi-IPNs enhances their mechanical and structural robustness and adsorption capacity. This review explores the key parameters affecting adsorption performance, including pH, temperature, contact time, and adsorbent dosage. Findings highlight that semi-IPN polysaccharide-based hydrogels exhibit remarkable adsorption capabilities through electrostatic interactions, ion exchange, and surface complexation. Furthermore, this review highlights the distinct advantages of semi-IPNs over other polymer networks. Semi-IPNs offer improved mechanical stability, higher adsorption efficiencies, and better reusability, making them a promising solution for wastewater treatment. Detailed isotherm models, including Langmuir and Freundlich isotherms, were studied to understand these hydrogels' adsorption behavior and capacity for different pollutants. This study highlights the potential of semi-IPN polysaccharide-based hydrogels as effective adsorbents for heavy metals and dyes and as a promising solution for mitigating environmental pollution. The insights provided herein contribute to developing advanced materials for environmental remediation, aligning with global sustainability goals, and advancing wastewater treatment technology.
A review of the potential adverse health impacts of atrazine in humans
Atrazine is a widely used chlorinated triazine herbicide in agricultural settings, which has raised concerns over its potential adverse effects on human health. The extensive application of atrazine has resulted in its pervasive presence in the environment, contaminating soil, groundwater, and surface water. While earlier research suggested that atrazine is unlikely to pose a health concern, recent evidence has indicated the necessity to reassess this point of view. This review aims to assess the recent evidence on atrazine's adverse effects on human health, focusing on (i) Cancer, (ii) Metabolic Diseases, (iii) Reproductive System, (iv) Neural System, and (v) Epigenetic Effects. Strategies to mitigate atrazine contamination and limitations of previous studies are also discussed. We strongly believe that further investigation is necessary to determine the potential detrimental consequences of atrazine in humans, particularly in developing countries, where herbicides are widely used without stringent safety regulations. Therefore, the current review will be beneficial for guiding future research and regulatory measures concerning the use of atrazine.
Tributyltin induces apoptosis in mammalian cells : a scoping review
The present review aimed to evaluate the apoptotic effect of tributyltin (TBT) exposure on mammalian tissues and cells . A search was conducted in specialized literature databases including Embase, Medline, Pubmed, Scholar Google, and Scopus for all manuscripts using the following keywords: "tributyltin", "apoptosis", "mammals", "mammalian cells', "eukaryotic cells", 'rodents', "rats", "mice" and "" for all data published until September 2023. A total of 16 studies were included. The studies have demonstrated that TBT exposure induces apoptosis in cells from various mammalian organs or tissues . TBT is capable to increase apoptotic cells, to activate proapoptotic proteins such as calpain, caspases, bax and beclin-1 and to inhibit antiapoptotic protein bcl-2. Additionally, TBT alters the ratio of bcl-2/bax which favor apoptosis. Therefore, the activation of enzymes such as calpain induces apoptosis mediated by ERS and caspases through the intrinsic apoptosis pathway. This review has demonstrated that TBT exposure induces apoptosis in mammalian tissues and cells .
The human health effects of unconventional oil and gas (UOG) chemical exposures: a scoping review of the toxicological literature
Many chemicals associated with unconventional oil and natural gas (UOG) are known toxicants, leading to health concerns about the effects of UOG. Our objective was to conduct a scoping review of the toxicological literature to assess the effects of UOG chemical exposures in models relevant to human health. We searched databases for primary research studies published in English or French between January 2000 and June 2023 on UOG-related toxicology studies. Two reviewers independently screened abstracts and full texts to determine inclusion. Seventeen studies met our study inclusion criteria. Nine studies used solely models, while six conducted their investigation solely in animal models. Two studies incorporated both types of models. Most studies used real water samples impacted by UOG or lab-made mixtures of UOG chemicals to expose their models. Most models used human cells in monocultures, while all animal studies were conducted in rodents. All studies detected significant deleterious effects associated with exposure to UOG chemicals or samples, including endocrine disruption, carcinogenicity, behavioral changes and metabolic alterations. Given the plausibility of causal relationships between UOG chemicals and adverse health outcomes highlighted in this review, future risk assessment studies should focus on measuring exposure to UOG chemicals in human populations.
Analytical methods, source, concentration, and human risks of microplastics: a review
Microplastics (MPs) as an atmospheric pollutant are currently receiving widespread attention. Although atmospheric MPs have been extensively studied, due to different research methods, systematic comparisons of atmospheric MPs are still needed. This review critically reviewed the analytical methods, research status and potential human exposure. In this review, the detection principles, advantages and limitations of different visual and chemical analysis methods are reported, and the potential risks of MPs to the human are also introduced. Based on future research about the human risks, emphasized the importance of establishing standardized research methods.
The role of environmental pollution in the development of pulmonary exacerbations in cystic fibrosis: a narrative review
Cystic fibrosis is the most common autosomal recessive disease in the Caucasian race. Its course is chronic and progressive, with pulmonary involvement being associated with greater morbidity and mortality. One of the factors most related to worse prognosis in these patients is respiratory exacerbations. Although limited, there is evidence demonstrating that increased exposure to environmental pollution, both acute and chronic, is associated with an increase in these exacerbations. It is crucial to fully understand this relationship in order to attempt to improve the respiratory health of these patients. That is why the available evidence is reviewed and measures are established to reduce exposure to pollutants.
Solid fuel use and low birth weight: a systematic review and meta-analysis
Solid fuel use is increasingly linked to low birth weight (LBW), but conclusions were inconsistent. We aimed to summarize the association between solid fuel use and LBW. Twenty-one studies that met the inclusion criteria were identified through PubMed, Qvid Medline, and Web of Science databases. The final search occurred on March 20, 2024. Summary relative effect and 95 % confidence intervals were estimated with a random-effects model. Subgroup analyses and sensitivity analyses were performed to investigate possible sources of heterogeneity and to test the stability of the results. Nineteen studies evaluated the association between solid fuel use in pregnant woman and LBW (1.188 for solid fuels: 1.055 to 1.322). No significant heterogeneity was identified among the included studies (p=0.010, Tau=0.02, I=48.1 %). Subgroup analysis found positive correlations for Asia, data years prior to 2014, and rural studies (1.245 for Asia: 1.077 to 1.412; Tau=0.03, I=56.0 %; 1.243 for data years prior to 2014: 1.062 to 1.424; Tau=0.04, I=60.98 %; 1.514 for rural: 1.258 to 1.771; Tau=0.00, I=0.0 %). Our meta-analysis showed that solid fuel use in pregnant women had an impact on LBW. Measures and policies are also needed to promote energy conversion and to limit and reduce the use of solid fuels.
WHO to build neglect of RF-EMF exposure hazards on flawed EHC reviews? Case study demonstrates how "no hazards" conclusion is drawn from data showing hazards
We examined one of the first published of the several systematic reviews being part of WHO's renewed initiative to assess the evidence of associations between man-made radiofrequency electromagnetic radiation (RF-EMF) and adverse health effects in humans. The examined review addresses experimental studies of pregnancy and birth outcomes in non-human mammals. The review claims that the analyzed data did not provide conclusions certain enough to inform decisions at a regulatory level. Our objective was to assess the quality of this systematic review and evaluate the relevance of its conclusions to pregnant women and their offspring. The quality and relevance were checked on the review's own premises: e.g., we did not question the selection of papers, nor the chosen statistical methods. While the WHO systematic review presents itself as thorough, scientific, and relevant to human health, we identified numerous issues rendering the WHO review irrelevant and severely flawed. All flaws found skew the results in support of the review's conclusion that there is no conclusive evidence for nonthermal effects. We show that the underlying data, when relevant studies are cited correctly, support the opposite conclusion: There are clear indications of detrimental nonthermal effects from RF-EMF exposure. The many identified flaws uncover a pattern of systematic skewedness aiming for uncertainty hidden behind complex scientific rigor. The skewed methodology and low quality of this review is highly concerning, as it threatens to undermine the trustworthiness and professionalism of the WHO in the area of human health hazards from man-made RF-EMF.
The influence of geology on the quality of groundwater for domestic use: a Kenyan review
Kenya's population, akin to other Sub-Saharan countries, is rapidly growing. With the increasing unreliability of surface water, groundwater resources are becoming highly relied on for domestic and industrial use. Despite several known contaminants reported in different parts of the country, no study has attempted to correlate groundwater quality in the different geological provinces. This review critically synthesizes the influence of Kenya's diverse geology on groundwater quality for human consumption. This was achieved through a review of published journal articles and other research material through research and government databases. Groundwater was categorised based on the major geological provinces including the Archaean volcanic Nyanzian Craton, the Proterozoic metamorphic Mozambique Mobile Belt (MMB) and volcanic Kisii Group, the Palaeozoic and Mesozoic sediments, and Tertiary volcanic Rift Valley. Groundwater quality in these regions showed a characteristic high concentration of fluoride (F) in volcanic aquifers of the Rift Valley and Nyazian Craton and metamorphic aquifers of the MMB, where mineral dissolution was the main process of F release. High salinity was common in metamorphic aquifers in the MMB and the Palaeozoic and Mesozoic sedimentary aquifers where mineral dissolution and seawater intrusion were the common contributors to salinity. Other contaminants such as lead and iron were reported in localised areas in the sedimentary and metamorphic aquifers, respectively. Anthropogenic contaminants such as Escherichia coli (, NO , and NO were common in shallow groundwater resources in most informal settlements in urban areas. Due to the presence of health implications, of the highlighted contaminants, such as fluorosis, high blood pressure and diarrhoea (due to high F and salinity) in affected regions, this review highlights the need for an active water resource management program in any country relying on groundwater resources to determine the presence of all region-specific potentially harmful chemical elements and mitigation measures in all its water resources.
Standards for levels of lead in soil and dust around the world
Lead poisoning is a serious environmental health problem in every country in the world. Exposure to lead results in neurocognitive and behavioral changes, has adverse effects on the immune system, causes anemia, hypertension and perturbs other organ systems. The effects of lead poisoning are most critical for children because their bodies are growing and developing, and particularly because agents that reduce cognitive function and attention span as well as promote disruptive behavior will have life-long consequences. Lead exposure, especially to children, is a major health disparity issue. If the next generation starts with reduced cognitive ability, there will be significant barriers for development of skills and country-wide development. While there are many sources of exposure to lead, the commonest source is lead in soil and dust. Since lead is an element, it does not go away and past releases of lead into the environment remain as soil and dust contamination. This is an especially important route of exposure to children because children regularly play in soil and are exposed via hand-to-mouth activity. In addition to indoor sources of lead, contaminated soil is tracked on shoes or feet and blown by air currents into homes, accumulating in household dust which is a major source of exposure for both children and adults. The purpose of this review is to determine standards presumed to be health protective for lead and dust in different countries. We find that many countries have no standards for lead in soil and dust and rely on standards set by the World Health Organization or the US Environmental Protection Agency, and these standards may or may not be enforced. There is considerable variation in standards set by other countries.
Exploring the link between ambient PM concentrations and respiratory diseases in the elderly: a study in the Muang district of Khon Kaen, Thailand
The impact of air pollution is a major public health concern. However, there are few studies on the correlation between PM and respiratory infections. This study aimed to determine a link between PM and respiratory diseases among the elderly in Thailand. The data source for this study consisted of 43 electronic files from the Khon Kaen Provincial Health Office covering years 2020 and 2021 and surveyed a total of 43,534 people. The generalized linear mixed model (GLMM) was used to determine the adjusted odds ratio (AOR), and 95 % CI. We found that exposure to PM concentrations (in 10 μg m increments) was associated with respiratory diseases (AOR: 3.98; 95 % CI [1.53-10.31]). Respondents who are male, aged less than 80 years, single, self-employed, or working as contractors, have a body mass index (BMI) not equal to the standard, have NCDs (hypertension, diabetes mellitus, and cardiovascular disease), are smokers, live in sub-districts where more than 5 % of the land is planted to sugarcane, or live in close proximity to a biomass power plant were at significantly higher risk of developing respiratory diseases (p<0.05). Therefore, environmental factors including ambient PM concentrations, the proportion of sugarcane plantation areas, and biomass power plants impact the occurrence of respiratory diseases among the elderly. Also, demographic factors and NCDs are serious issues. Systematic approaches to reducing PM levels in industrial and agricultural sectors are necessary for both the general population and vulnerable groups, including the elderly and NCD patients.
Summary of seven Swedish case reports on the microwave syndrome associated with 5G radiofrequency radiation
The fifth generation, 5G, for wireless communication is currently deployed in Sweden since 2019/2020, as well as in many other countries. We have previously published seven case reports that include a total of 16 persons aged between 4 and 83 years that developed the microwave syndrome within short time after being exposed to 5G base stations close to their dwellings. In all cases high radiofrequency (RF) radiation from 4G/5G was measured with a broadband meter. RF radiation reached >2,500,000 to >3,180,000 μW/m in peak maximum value in three of the studies. In total 41 different health issues were assessed for each person graded 0 (no complaint) to 10 (worst symptoms). Most prevalent and severe were sleeping difficultly (insomnia, waking night time, early wake-up), headache, fatique, irritability, concentration problems, loss of immediate memory, emotional distress, depression tendency, anxiety/panic, dysesthesia (unusual touched based sensations), burning and lancinating skin, cardiovascular symptoms (transitory high or irregular pulse), dyspnea, and pain in muscles and joints. Balance disorder and tinnitus were less prevalent. All these symptoms are included in the microwave syndrome. In most cases the symptoms declined and disappeared within a short time period after the studied persons had moved to a place with no 5G. These case histories are classical examples of provocation studies. They reinforce the urgency to inhibit the deployment of 5G until more safety studies have been performed.
Expanding the focus of the One Health concept: links between the Earth-system processes of the planetary boundaries framework and antibiotic resistance
The scientific community warns that our impact on planet Earth is so acute that we are crossing several of the planetary boundaries that demarcate the safe operating space for humankind. Besides, there is mounting evidence of serious effects on people's health derived from the ongoing environmental degradation. Regarding human health, the spread of antibiotic resistant bacteria is one of the most critical public health issues worldwide. Relevantly, antibiotic resistance has been claimed to be the quintessential One Health issue. The One Health concept links human, animal, and environmental health, but it is frequently only focused on the risk of zoonotic pathogens to public health or, to a lesser extent, the impact of contaminants on human health, i.e., adverse effects on human health coming from the other two One Health "compartments". It is recurrently claimed that antibiotic resistance must be approached from a One Health perspective, but such statement often only refers to the connection between the use of antibiotics in veterinary practice and the antibiotic resistance crisis, or the impact of contaminants (antibiotics, heavy metals, disinfectants, etc.) on antibiotic resistance. Nonetheless, the nine Earth-system processes considered in the planetary boundaries framework can be directly or indirectly linked to antibiotic resistance. Here, some of the main links between those processes and the dissemination of antibiotic resistance are described. The ultimate goal is to expand the focus of the One Health concept by pointing out the links between critical Earth-system processes and the One Health quintessential issue, i.e., antibiotic resistance.
Effectiveness of educational interventions for the prevention of lead poisoning in children: a systematic review
Childhood exposure to lead has severe health consequences including long-term physical, behavioral, and learning problems. Lead poisoning often occurs in the home and persists as a form of environmental injustice, disparately impacting certain children based on factors such as socioeconomic status, immigration status, and race. Because abatement is costly, many prevention programs rely on educational interventions. We conducted a systematic review to assess the effectiveness of educational interventions on reducing blood lead levels (BLL) in children.
Phthalates and uterine disorders
Humans are ubiquitously exposed to environmental endocrine disrupting chemicals such as phthalates. Phthalates can migrate out of products and enter the human body through ingestion, inhalation, or dermal application, can have potential estrogenic/antiestrogenic and/or androgenic/antiandrogenic activity, and are involved in many diseases. As a female reproductive organ that is regulated by hormones such as estrogen, progesterone and androgen, the uterus can develop several disorders such as leiomyoma, endometriosis and abnormal bleeding. In this review, we summarize the hormone-like activities of phthalates, studies of endometrial cells exposed to phthalates, epigenetic modifications in the uterus induced by phthalate exposure, and associations between phthalate exposure and uterine disorders such as leiomyoma and endometriosis. Moreover, we also discuss the current research gaps in understanding the relationship between phthalate exposure and uterine disorders.
Association between exposure to per- and polyfluoroalkyl substances and levels of lipid profile based on human studies
Epidemiological evidence suggests that exposure to per- and polyfluoroalkyl substances (PFAS) is associated with lipid profile levels, but with inconsistent conclusions from different studies. The aim of this study was to conduct a meta-analysis of the relationship between PFAS exposure and lipid profile levels based on population-based epidemiological studies. Embase, PubMed, Ovid database, The Cochrane Library and Web of Science database were used to search appropriate studies (before September 6, 2022) on the correlation between PFAS exposure and lipid profile levels. value, odd ratio (OR) and 95 % confidence intervals (CIs) were extracted from studies. In this study, we found that higher low-density lipoprotein (LDL) levels were associated with exposure to perfluoroundecanoic acid (PFUnDA) ( value=0.13, 95 % CIs: 0.02, 0.24) and perfluorooctane sulfonic acid (PFOS) ( value=0.13, 95 % CIs: 0.04, 0.21). PFOA, PFOS and PFNA exposure were significantly related to the higher levels of total cholesterol (TC) with the pooled effect estimates of 0.08 (95 % CI: 0.02, 0.14), 0.13 (95 % CI: 0.05, 0.21) and 0.14 (95 % CI: 0.08, 0.20) respectively. In sum, our results identified that PFOA, PFOS, PFNA and PFUnDA were the most important risk factors for abnormal levels of lipid profile, indicating that we should prevent cerebrovascular disease by reducing and controlling PFAS exposure.
The association between indoor air pollution from solid fuels and cognitive impairment: a systematic review and meta-analysis
This study aimed to comprehensively and methodically evaluate the correlation between cognitive impairment and indoor air pollution from solid fuel used for cooking/heating. PubMed, Web of Science, EMBASE, and Cochrane Library databases were searched up to December January 2023. 13 studies from three countries with a total of 277,001 participants were enrolled. A negative correlation was discovered between solid fuel usage for cooking and total cognitive score (β=-0.73, 95 % CI: -0.90 to -0.55) and episodic memory score (β=-0.23, 95 % CI: -0.30 to -0.17). Household solid fuel usage for cooking was considerably associated with a raised risk of cognitive impairment (HR=1.31, 95 % CI: 1.09-1.57) and cognitive decline (HR=1.24, 95 % CI: 1.18-1.30). Compared to continuous solid fuel use for cooking, sustained use of clean fuel and switching from solid fuel to clean fuel were associated with a lower risk of cognitive decline (OR=0.55, 95 % CI: 0.42-0.73; OR=0.81, 95 % CI: 0.71-0.93). A negative association was found between solid fuel usage for heating and total cognitive score (β=-0.43, 95 % CI: -0.59 to -0.26) and episodic memory score (β=-0.22, 95 % CI: -0.34 to -0.10). Our research provided evidence that exposure to indoor air pollution from solid fuel is a potential cause of cognitive impairment and cognitive decline. Making the switch from solid fuels to cleaner fuels could be an important step in preventing cognitive impairment in the elderly.