CONTROL ENGINEERING PRACTICE

Adaptive Personalized Prior-Knowledge-Informed Model Predictive Control for Type 1 Diabetes
Sun X, Rashid M, Askari MR and Cinar A
This work considers the problem of adaptive prior-informed model predictive control (MPC) formulations that explicitly incorporate prior knowledge in the model development and is robust to missing data in the output measurements. The proposed prediction model is based on a latent variables model to extract glycemic dynamics from highly-correlated data and incorporates prior knowledge of exponential stability to improve the prediction ability. Missing data structures are formulated to enable model predictions when output measurements are missing for short periods of time. Based on the latent variables model, the MPC strategy and adaptive rules are developed to automatically tune the aggressiveness of the MPC. The adaptive prior-knowledge-informed MPC is evaluated with computer simulations for the control of blood glucose concentrations in people with Type 1 diabetes (T1D) using simulated virtual patients. Due to the variability among people with T1D, the hyperparameters of the prior-knowledge-informed model are personalized to individual subjects. The percentage of time spent in the target range is 76.48% when there are no missing data and 76.52% when there are missing data episodes lasting up to 30 mins (6 samples). Incorporating the adaptive rules further improves the percentage of time in target range to 84.58% and 84.88% for cases with no missing data and missing data, respectively. The proposed adaptive prior-informed MPC formulation provides robust, effective, and safe regulation of glucose concentration in T1D despite disturbances and missing measurements.
Prior Informed Regularization of Recursively Updated Latent-Variables-Based Models with Missing Observations
Sun X, Rashid M, Hobbs N, Askari MR, Brandt R, Shahidehpour A and Cinar A
Many data-driven modeling techniques identify locally valid, linear representations of time-varying or nonlinear systems, and thus the model parameters must be adaptively updated as the operating conditions of the system vary, though the model identification typically does not consider prior knowledge. In this work, we propose a new regularized partial least squares (rPLS) algorithm that incorporates prior knowledge in the model identification and can handle missing data in the independent covariates. This latent variable (LV) based modeling technique consists of three steps. First, a LV-based model is developed on the historical time series data. In the second step, the missing observations in the new incomplete data sample are estimated. Finally, the future values of the outputs are predicted as a linear combination of estimated scores and loadings. The model is recursively updated as new data are obtained from the system. The performance of the proposed rPLS and rPLS with exogenous inputs (rPLSX) algorithms are evaluated by modeling variations in glucose concentration (GC) of people with Type 1 diabetes (T1D) in response to meals and physical activities for prediction windows up to one hour, or 12 sampling instances, into the future. The proposed rPLS family of GC prediction models are evaluated with both in-silico and clinical experiment data and compared with the performance of recursive time series and kernel-based models. The root mean squared error (RMSE) with simulated subjects in the multivariable T1D simulator where physical activity effects are incorporated in GC variations are 2.52 and 5.81 mg/dL for 30 and 60 mins ahead predictions (respectively) when information for all meals and physical activities are used, increasing to 2.70 and 6.54 mg/dL (respectively) when meals and activities occurred, but the information is with-held from the modeling algorithms. The RMSE is 10.45 and 14.48 mg/dL for clinical study with prediction horizons of 30 and 60 mins, respectively. The low RMSE values demonstrate the effectiveness of the proposed rPLS approach compared to the conventional recursive modeling algorithms.
Control-oriented physiological modeling of hemodynamic responses to blood volume perturbation
Bighamian R, Parvinian B, Scully CG, Kramer G and Hahn JO
This paper presents a physiological model to reproduce hemodynamic responses to blood volume perturbation. The model consists of three sub-models: a control-theoretic model relating blood volume response to blood volume perturbation; a simple physics-based model relating blood volume to stroke volume and cardiac output; and a phenomenological model relating cardiac output to blood pressure. A unique characteristic of this model is its balance for simplicity and physiological transparency. Initial validity of the model was examined using experimental data collected from 11 animals. The model may serve as a viable basis for the design and evaluation of closed-loop fluid resuscitation controllers.
Model-Fusion-Based Online Glucose Concentration Predictions in People with Type 1 Diabetes
Yu X, Turksoy K, Rashid M, Feng J, Frantz N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z, Littlejohn E, Quinn L and Cinar A
Accurate predictions of glucose concentrations are necessary to develop an artificial pancreas (AP) system for people with type 1 diabetes (T1D). In this work, a novel glucose forecasting paradigm based on a model fusion strategy is developed to accurately characterize the variability and transient dynamics of glycemic measurements. To this end, four different adaptive filters and a fusion mechanism are proposed for use in the online prediction of future glucose trajectories. The filter fusion mechanism is developed based on various prediction performance indexes to guide the overall output of the forecasting paradigm. The efficiency of the proposed model fusion based forecasting method is evaluated using simulated and clinical datasets, and the results demonstrate the capability and prediction accuracy of the data-based fusion filters, especially in the case of limited data availability. The model fusion framework may be used in the development of an AP system for glucose regulation in patients with T1D.
Optimized Treatment of Fibromyalgia Using System Identification and Hybrid Model Predictive Control
Deshpande S, Nandola NN, Rivera DE and Younger JW
The term is used in behavioral health to describe individually-tailored strategies for preventing and treating chronic, relapsing disorders. This paper describes a system identification approach for developing dynamical models from clinical data, and subsequently, a hybrid model predictive control scheme for assigning dosages of naltrexone as treatment for fibromyalgia, a chronic pain condition. A simulation study that includes conditions of significant plant-model mismatch demonstrates the benefits of hybrid predictive control as a decision framework for optimized adaptive interventions. This work provides insights on the design of novel personalized interventions for chronic pain and related conditions in behavioral health.
Cycle-averaged dynamics of a periodically driven, closed-loop circulation model
Heldt T, Chang JL, Chen JJ, Verghese GC and Mark RG
Time-varying elastance models have been used extensively in the past to simulate the pulsatile nature of cardiovascular waveforms. Frequently, however, one is interested in dynamics that occur over longer time scales, in which case a detailed simulation of each cardiac contraction becomes computationally burdensome. In this paper, we apply circuit-averaging techniques to a periodically driven, closed-loop, three-compartment recirculation model. The resultant cycle-averaged model is linear and time invariant, and greatly reduces the computational burden. It is also amenable to systematic order reduction methods that lead to further efficiencies. Despite its simplicity, the averaged model captures the dynamics relevant to the representation of a range of cardiovascular reflex mechanisms.
Perception of flight information from EFIS displays
Hosman RJ and Mulder M
A pilot's perception of variables presented on the Electronic Flight Instrument System, EFIS, was investigated. A stimulus response technique was used to determine the accuracy and speed of the perception process. By varying the exposure time of the stimuli, it is shown that the perception of a variable's magnitude is faster and more accurate than the perception of the first derivative or rate of that variable. Results of experiments on roll and pitch attitude perception, the influence of scale division, and the perception of the indicated airspeed, are shown.
Pilot's perception in the control of aircraft motions
Hosman R and Stassen H
For proper manual aircraft control, the pilot has to perceive the motion state of the aircraft. In this perception process both the visual and the vestibular systems play an important role. To understand this perception process and its impact on a pilot's control behavior a descriptive model was developed. The single-channel information-processor model was applied as the basic structure of the final model. Three groups of experiments were performed to refine the model structure and to define the majority of the model parameters. The model has been evaluated by measuring the control behavior in tracking tasks.