Nano Futures

Magnetic nanoparticles and magnetic particle spectroscopy-based bioassays: a 15 year recap
Wu K, Liu J, Chugh VK, Liang S, Saha R, Krishna VD, Cheeran MC and Wang JP
Magnetic nanoparticles (MNPs) have unique physical and chemical properties, such as high surface area to volume ratio and size-related magnetism, which are completely different from their bulk materials. Benefiting from the facile synthesis and chemical modification strategies, MNPs have been widely studied for applications in nanomedicine. Herein, we firstly summarized the designs of MNPs from the perspectives of materials and physicochemical properties tailored for biomedical applications. Magnetic particle spectroscopy (MPS), first reported in 2006, has flourished as an independent platform for many biological and biomedical applications. It has been extensively reported as a versatile platform for a variety of bioassays along with the artificially designed MNPs, where the MNPs serve as magnetic nanoprobes to specifically probe target analytes from fluid samples. In this review, the mechanisms and theories of different MPS platforms realizing volumetric- and surface-based bioassays are discussed. Some representative works of MPS platforms for applications such as disease diagnosis, food safety and plant pathology monitoring, drug screening, thrombus maturity assessments are reviewed. At the end of this review, we commented on the rapid growth and booming of MPS-based bioassays in its first 15 years. We also prospected opportunities and challenges that portable MPS devices face in the rapidly growing demand for fast, inexpensive, and easy-to-use biometric techniques.
Sensing the electrical activity of single ion channels with top-down silicon nanoribbons
Zhou W, Mu L, Li J, Reed M and Burke PJ
Using top-down fabricated silicon nanoribbons, we measure the opening and closing of ion channels alamethicin and gramicidin A. A capacitive model of the system is proposed to demonstrate that the geometric capacitance of the nanoribbon is charged by ion channel currents. The integration of top-down nanoribbons with electrophysiology holds promise for integration of electrically active living systems with artificial electronics.
High-brightness Cs focused ion beam from a cold-atomic-beam ion source
Steele AV, Schwarzkopf A, McClelland JJ and Knuffman B
We present measurements of focal spot size and brightness in a focused ion beam system utilizing a laser-cooled atomic beam source of Cs ions. Spot sizes as small as (2.1 ± 0.2) nm (one standard deviation) and reduced brightness values as high as (2.4 ± 0.1) × 10 A m Sr eV are observed with a 10 keV beam. This measured brightness is over 24 times higher than the highest brightness observed in a Ga liquid metal ion source. The behavior of brightness as a function of beam current and the dependence of effective source temperature on ionization energy are examined. The performance is seen to be consistent with earlier predictions. Demonstration of this source with very high brightness, producing a heavy ionic species such as Cs, promises to allow significant improvements in resolution and throughput for such applications as next-generation circuit edit and nanoscale secondary ion mass spectrometry.
Observation of Giant Conductance Fluctuations in a Protein
Zhang B, Song W, Pang P, Zhao Y, Zhang P, Csabai I, Vattay G and Lindsay S
Proteins are insulating molecular solids, yet even those containing easily reduced or oxidized centers can have single-molecule electronic conductances that are too large to account for with conventional transport theories. Here, we report the observation of remarkably high electronic conductance states in an electrochemically-inactive protein, the ~200 kD αβ extracelluar domain of human integrin. Large current pulses (up to nA) were observed for long durations (many ms, corresponding to many pC of charge transfer) at large gap (>5nm) distances in an STM when the protein was bound specifically by a small peptide ligand attached to the electrodes. The effect is greatly reduced when a homologous, weakly-binding protein (αβ) is used as a control. In order to overcome the limitations of the STM, the time- and voltage-dependence of the conductance were further explored using a fixed-gap (5 nm) tunneling junction device that was small enough to trap a single protein molecule at any one time. Transitions to a high conductance (~ nS) state were observed, the protein being "on" for times from ms to tenths of a second. The high-conductance states only occur above ~ 100mV applied bias, and thus are not an equilibrium property of the protein. Nanoamp two-level signals indicate the specific capture of a single molecule in an electrode gap functionalized with the ligand. This offers a new approach to label-free electronic detection of single protein molecules. Electronic structure calculations yield a distribution of energy level spacings that is consistent with a recently proposed quantum-critical state for proteins, in which small fluctuations can drive transitions between localized and band-like electronic states.