Can yield, soil C and aggregation be improved under long-term conservation agriculture in the eastern Indo-Gangetic plain of India?
Deteriorating soil health, diminishing soil organic carbon (SOC), development of subsurface hard compact layer and declining system productivity are barriers to achieving sustainable production in the traditional rice-wheat cropping system (TA) in the eastern Indo-Gangetic Plain of India. Conservation agriculture (CA), which favours minimum soil disturbance, crop residue retention and crop diversification could be a viable alternative to the TA to address most of those major problems. With that in mind, a long-term experiment is being implemented at ICAR-RCER, Patna, Bihar, India, with four treatments: (a) TA, (b) full CA (fCA) and (c and d) partial CA (pCA1 and pCA2), differing in crop establishment methods, cropping system and crop residue management in a randomized complete block design. Measurement of soil health parameters was carried out in the 11th year of the experiment. The results revealed a beneficial effect of CA and 46 and 40% increase in SOC concentration and stock, respectively, under fCA over TA in the 0-7.5-cm soil layer. The effect of partial CA (pCA1 and pCA2) was variable, but an increasing trend was always observed under pCA compared to TA. There was an enrichment in SOC content of aggregates under CA irrespective of size class; however, no relation was found between SOC content and aggregate diameter. The contribution of macroaggregates to SOC stock was larger (36-66%) under CA in the 0-7.5-cm soil layer. Adoption of CA improved the macroaggregate content, MWD and GMD of aggregates, and aggregation ratio. Soil macropore content was greater under fCA, whereas other parameters were similar among treatments. The impact of CA was mostly limited to 0-7.5 cm soil layer and a maximum up to 15 cm soil depth while evaluation until 60 cm soil depth was realized. The yield of rice in CA was comparable to or higher than in TA, whereas the system rice equivalent yield was always higher (38-53%) under CA than under the conventional practices. Therefore, a CA-based cropping system must be encouraged, to increase SOC status, improve aggregation stability and, consequently, sustain or increase system productivity, in order to achieve food and nutritional security in the eastern Indo-Gangetic Plain of India.
On glyphosate-kaolinite surface interactions. A molecular dynamic study
Glyphosate is an important and widely used herbicide, its environmental behaviour being of scientific and public interest. Computational models of clay minerals and their interactions with small organic molecules are valuable in studying adsorption processes at an atomistic resolution. We analysed the adsorption process of glyphosate on kaolinite, a clay mineral with a high abundance in several types of soils (e.g., of subtropical or tropical origin), in terms of the adsorption strength. The molecular interactions are characterized by monitoring the occurrence of hydrogen bonds, the orientation of the molecular dipole relative to the interface and the interaction energy. Two different ionic forms of glyphosate were considered: neutral and anionic (-1). It was shown that the main mechanism of the binding of both glyphosate forms to the aluminol surface of kaolinite is through multiple hydrogen bonds. The standard free energy of adsorption of neutral glyphosate from water solution to the basal octahedral surface of kaolinite was computed at -5 kJ mol, whereas for the anionic form this quantity amounted to -14 kJ mol. Our finding showed that kaolinite has an important contribution to overall adsorption capacity of soils for glyphosate, specifically in its anionic form.
Physical properties of a sandy soil as affected by incubation with a synthetic root exudate: Strength, thermal and hydraulic conductivity, and evaporation
Plant roots release various organic materials that may modify soil structure and affect heat and mass transfer processes. The objective of this study was to determine the effects of a synthetic root exudate (SRE) on penetrometer resistance (PR), thermal conductivity (λ), hydraulic conductivity () and evaporation of water in a sandy soil. Soil samples, mixed with either distilled water or the SRE, were packed into columns at a designated bulk density and water content, and incubated for 7 days at 18°C. Soil PR, λ, and evaporation rate were monitored during drying processes. Compared with those incubated with water, samples incubated with SRE had visible hyphae, greater PR (0.7-5.5 MPa in the water content range of 0.11 to 0.22 m m) and λ (0.2-0.7 W m K from 0.05 to 0.22 m m), and increased in the wet region but decreased in the dry region. SRE treatment also reduced the overall soil water evaporation rate and cumulative water loss. Analysis of X-ray computed tomography (CT) scanning showed that the SRE-treated samples had a greater proportion of small pores (<60 μm). These changes were attributed mainly to SRE-stimulated microbial activities.
Molecular modelling of sorption processes of a range of diverse small organic molecules in Leonardite humic acid
Soil organic matter (SOM) is abundant in the environment and plays an important role in several biogeochemical processes, including microbial activity, soil aggregation, plant growth and carbon storage. One of its key functions is the retention and release of various chemical compounds, primarily governed by the sorption process, which strongly affects the environmental fate of nutrients and pollutants. Sorption largely depends on the composition of SOM, as well as its structure, dynamics and the thermodynamic conditions. Although several approaches are available, experimental characterization of sorption mechanisms is not easy. Computational models for predicting sorption coefficients often require a wealth of experimental data for training and are only applicable to compounds and conditions related to the training dataset. Here, we use molecular dynamics (MD) simulations to study the sorption of a range of small organic compounds. As a model SOM system we use the standard Leonardite humic acid (LHA) sample, which physicochemical properties have recently been characterized computationally in detail. This model allowed us to estimate sorption propensities of the systems at two different hydration levels (water activities close to 0 and 1), showing a remarkable correlation with experimental data. Importantly, this molecular modelling approach based on perturbation free-energy calculations is rigorously derived from statistical thermodynamics and requires no experimental sorption data for training. It is therefore in principle applicable to any SOM model or thermodynamic condition. Moreover, the power of MD simulations to provide high-resolution insight into atomistic and molecular interactions was employed to explore how sorbate molecules associate with the LHA matrix and which contacts they form. The heteroatoms of both sorbate and sorbent play an important role and water molecules are identified as further key players in facilitating the sorption process.
Boundary line models for soil nutrient concentrations and wheat yield in national-scale datasets
In boundary line analysis a biological response (e.g., crop yield) is assumed to be a function of a variable (e.g., soil nutrient concentration), which limits the response in only some subset of observations because other limiting factors also apply. The response function is therefore expressed by an upper boundary of the plot of the response against the variable. This model has been used in various branches of soil science. In this paper we apply it to the analysis of some large datasets, originating from commercial farms in England and Wales, on the recorded yield of wheat and measured concentrations of soil nutrients in within-field soil management zones. We considered boundary line models for the effects of potassium (K), phosphorus (P) and magnesium (Mg) on yield, comparing the model with a simple bivariate normal distribution or a bivariate normal censored at a constant maximum yield. We were able to show, using likelihood-based methods, that the boundary line model was preferable in most cases. The boundary line model suggested that the standard RB209 soil nutrient index values (Agriculture and Horticulture Development Board, nutrient management guide (RB209), 2017) are robust and apply at the within-field scale. However, there was evidence that wheat yield could respond to additional Mg at concentrations above index 0, contrary to RB209 guidelines. Furthermore, there was evidence that the boundary line model for yield and P differs between soils at different pH and depth intervals, suggesting that shallow soils with larger pH require a larger target P index than others.
Combining two national-scale datasets to map soil properties, the case of available magnesium in England and Wales
Given the costs of soil survey it is necessary to make the best use of available datasets, but data that differ with respect to some aspect of the sampling or analytical protocol cannot be combined simply. In this paper we consider a case where two datasets were available on the concentration of plant-available magnesium in the topsoil. The datasets were the Representative Soil Sampling Scheme (RSSS) and the National Soil Inventory (NSI) of England and Wales. The variable was measured over the same depth interval and with the same laboratory method, but the sample supports were different and so the datasets differ in their variance. We used a multivariate geostatistical model, the linear model of coregionalization (LMCR), to model the joint spatial distribution of the two datasets. The model allowed us to elucidate the effects of the sample support on the two datasets, and to show that there was a strong correlation between the underlying variables. The LMCR allowed us to make spatial predictions of the variable on the RSSS support by cokriging the RSSS data with the NSI data. We used cross-validation to test the validity of the LMCR and showed how incorporating the NSI data restricted the range of prediction error variances relative to univariate ordinary kriging predictions from the RSSS data alone. The standardized squared prediction errors were computed and the coverage of prediction intervals (i.e. the proportion of sites at which the prediction interval included the observed value of the variable). Both these statistics suggested that the prediction error variances were consistent for the cokriging predictions but not for the ordinary kriging predictions from the simple combination of the RSSS and NSI data, which might be proposed on the basis of their very similar mean values. The LMCR is therefore proposed as a general tool for the combined analysis of different datasets on soil properties.
Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure
Assessments of changes in soil organic carbon (SOC) stocks depend heavily on reliable values of SOC content obtained by automated high-temperature C analysers. However, historical as well as current research often relies on indirect SOC estimates such as loss-on-ignition (LOI). In this study, we revisit the conversion of LOI to SOC using soil from two long-term agricultural field experiments and one arable field with different contents of SOC, clay and particles <20 μm (Fines20). Clay-, silt- and sand-sized fractions were isolated from the arable soil. Samples were analysed for texture, LOI (500°C for 4 hours) and SOC by dry combustion. For a topsoil with 2 g C and 30 g clay 100 g soil, converting LOI to SOC by the conventional factor 0.58 overestimated the SOC stock by 45 Mg C ha. The error increased with increasing contents of clay and Fines20. Converting LOI to SOC by a regression model underestimated the SOC stock by 5 Mg C ha at small clay and Fines20 contents and overestimated the SOC stock by 8 Mg C ha at large contents. This was due to losses of structural water from clay minerals. The best model to convert LOI to SOC incorporated clay content. Evaluating this model against an independent dataset gave a root mean square error and mean error of 0.295 and 0.125 g C 100 g, respectively. To avoid misleading accounts of SOC stocks in agricultural soils, we recommend re-analysis of archived soil samples for SOC using high-temperature dry combustion methods. Where archived samples are not available, accounting for clay content improves conversion of LOI to SOC considerably. The use of the conventional conversion factor 0.58 is antiquated and provides misleading estimates of SOC stocks.
The effect of microbial activity on soil water diffusivity
In this study, we explored the effects of microbial activity on the evaporation of water from cores of a sandy soil under laboratory conditions. We applied treatments to stimulate microbial activity by adding different amounts of synthetic analogue root exudates. For comparison, we used soil samples without synthetic root exudates as control and samples treated with mercuric chloride to suppress microbial activity. Our results suggest that increasing microbial activity reduces the rate of evaporation from soil. Estimated diffusivities in soil with the largest amounts of added root exudates were one third of those estimated in samples where microbial activity was suppressed by adding mercuric chloride. We discuss the effect of our results with respect to water uptake by roots.
The importance of long-term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience
Long-term field experiments that test a range of treatments and are intended to assess the sustainability of crop production, and thus food security, must be managed actively to identify any treatment that is failing to maintain or increase yields. Once identified, carefully considered changes can be made to the treatment or management, and if they are successful yields will change. If suitable changes cannot be made to an experiment to ensure its continued relevance to sustainable crop production, then it should be stopped. Long-term experiments have many other uses. They provide a field resource and samples for research on plant and soil processes and properties, especially those properties where change occurs slowly and affects soil fertility. Archived samples of all inputs and outputs are an invaluable source of material for future research, and data from current and archived samples can be used to develop models to describe soil and plant processes. Such changes and uses in the Rothamsted experiments are described, and demonstrate that with the appropriate crop, soil and management, acceptable yields can be maintained for many years, with either organic manure or inorganic fertilizers.
The effect of soil on human health: an overview
Soil has a considerable effect on human health, whether those effects are positive or negative, direct or indirect. Soil is an important source of nutrients in our food supply and medicines such as antibiotics. However, nutrient imbalances and the presence of human pathogens in the soil biological community can cause negative effects on health. There are also many locations where various elements or chemical compounds are found in soil at toxic levels, because of either natural conditions or anthropogenic activities. The soil of urban environments has received increased attention in the last few years, and they too pose a number of human health questions and challenges. Concepts such as soil security may provide a framework within which issues on soil and human health can be investigated using interdisciplinary and transdisciplinary approaches. It will take the contributions of experts in several different scientific, medical and social science fields to address fully soil and human health issues. Although much progress was made in understanding links between soil and human health over the last century, there is still much that we do not know about the complex interactions between them. Therefore, there is still a considerable need for research in this important area.
Plant exudates may stabilize or weaken soil depending on species, origin and time
We hypothesized that plant exudates could either gel or disperse soil depending on their chemical characteristics. Barley (Hordeum vulgare L. cv. Optic) and maize (Zea mays L. cv. Freya) root exudates were collected using an aerated hydroponic method and compared with chia (Salvia hispanica L.) seed exudate, a commonly used root exudate analogue. Sandy loam soil was passed through a 500μm mesh and treated with each exudate at a concentration of 4.6 mg exudate g dry soil. Two sets of soil samples were prepared. One set of treated soil samples was maintained at 4°C to suppress microbial processes. To characterize the effect of decomposition, the second set of samples was incubated at 16°C for 2 weeks at -30 kPa matric potential. Gas chromatography-mass spectrometry (GC-MS) analysis of the exudates showed that barley had the largest organic acid content and chia the largest content of sugars (polysaccharide-derived or free), and maize was in between barley and chia. Yield stress of amended soil samples was measured by an oscillatory strain sweep test with a cone plate rheometer. When microbial decomposition was suppressed at 4°C, yield stress increased 20-fold for chia seed exudate and twofold for maize root exudate compared with the control, whereas for barley root exudate decreased to half. The yield stress after 2 weeks of incubation compared with soil with suppressed microbial decomposition increased by 85% for barley root exudate, but for chia and maize it decreased by 87 and 54%, respectively. Barley root exudation might therefore disperse soil and this could facilitate nutrient release. The maize root and chia seed exudates gelled soil, which could create a more stable soil structure around roots or seeds.
Effect of microbial activity on penetrometer resistance and elastic modulus of soil at different temperatures
We explore the effect of microbial activity stimulated by root exudates on the penetrometer resistance of soil and its elastic modulus. This is important because it is a measure of the mechanical strength of soil and it correlates closely with the rate of elongation of roots. A sandy soil was incubated with a synthetic root exudate at different temperatures, for different lengths of time and with selective suppression of either fungi or bacteria. The shape of the temperature response of penetrometer resistance in soil incubated with synthetic exudate was typical of a poikilothermic temperature response. Both penetrometer resistance and small strain shear modulus had maximum values between 25 and 30°C. At temperatures of 20°C and less, there was little effect of incubation with synthetic root exudate on the small strain shear modulus, although penetrometer resistance did increase with temperature over this range (4-20°C). This suggests that in this temperature range the increase in penetrometer resistance was related to a greater resistance to plastic deformation. At higher temperatures (> 25°C) penetrometer resistance decreased. Analysis of the DNA sequence data showed that at 25°C the number of Streptomyces (Gram-positive bacteria) increased, but selective suppression of either fungi or bacteria suggested that fungi have the greater role with respect to penetrometer resistance.
Changes in soil organic matter over 70 years in continuous arable and ley-arable rotations on a sandy loam soil in England
The sequestration in soil of organic carbon (SOC) derived from atmospheric carbon dioxide (CO) by replacing arable crops with leys, has been measured over 70 years on a sandy loam soil. The experiment was designed initially to test the effect of leys on the yields of arable crops. A 3-year grazed grass with clover (grass + clover) ley in a 5-year rotation with arable crops increased percentage organic carbon (%OC) in the top 25 cm of the soil from 0.98 to 1.23 in 28 years, but with little further increase during the next 40 years with all-grass leys given fertilizer nitrogen (N). In this second period, OC inputs were balanced by losses, suggesting that about 1.3% OC might be near the equilibrium content for this rotation. Including 3-year lucerne (Medicago sativa) leys had little effect on %OC over 28 years, but after changing to grass + clover leys, %OC increased to 1.24 during the next 40 years. Eight-year leys (all grass with N or grass + clover) in 10-year rotations with arable crops were started in the 1970s, and after three rotations %OC had increased to ca. 1.40 in 2000-2009. Over 70 years, %OC declined from 0.98 to 0.94 in an all-arable rotation with mainly cereals and to 0.82 with more root crops. Applications of 38 t ha farmyard manure (FYM) every fifth year increased %OC by 0.13% by the mid-1960s when applications ceased. Soil treated with FYM still contained 0.10% more OC in 2000-2009. Changes in the amount of OC have been modelled with RothC-26.3 and estimated inputs of C for selected rotations. Little of the OC input during the 70 years has been retained; most was retained in the grazed ley rotation, but 9 t ha only of a total input of 189 t ha. In other rotations more than 98% of the total OC input was lost. Despite large losses of C, annual increases in OC of 4‰ are possible on this soil type with the inclusion of grass or grass + clover leys or the application of FYM, but only for a limited period. Such increases in SOC might help to limit increases in atmospheric CO.
Long-term management changes topsoil and subsoil organic carbon and nitrogen dynamics in a temperate agricultural system
Soil organic carbon (SOC) and nitrogen (N) contents are controlled partly by plant inputs that can be manipulated in agricultural systems. Although SOC and N pools occur mainly in the topsoil (upper 0.30 m), there are often substantial pools in the subsoil that are commonly assumed to be stable. We tested the hypothesis that contrasting long-term management systems change the dynamics of SOC and N in the topsoil and subsoil (to 0.75 m) under temperate conditions. We used an established field experiment in the UK where control grassland was changed to arable (59 years before) and bare fallow (49 years before) systems. Losses of SOC and N were 65 and 61% under arable and 78 and 74% under fallow, respectively, in the upper 0.15 m when compared with the grass land soil, whereas at 0.3-0.6-m depth losses under arable and fallow were 41 and 22% and 52 and 35%, respectively. The stable isotopes C and N showed the effects of different treatments. Concentrations of long-chain n-alkanes C, C and C were greater in soil under grass than under arable and fallow. The dynamics of SOC and N changed in both topsoil and subsoil on a decadal time-scale because of changes in the balance between inputs and turnover in perennial and annual systems. Isotopic and geochemical analyses suggested that fresh inputs and decomposition processes occur in the subsoil. There is a need to monitor and predict long-term changes in soil properties in the whole soil profile if soil is to be managed sustainably.
The North Wyke Farm Platform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics
The North Wyke Farm Platform was established as a United Kingdom national capability for collaborative research, training and knowledge exchange in agro-environmental sciences. Its remit is to research agricultural productivity and ecosystem responses to different management practices for beef and sheep production in lowland grasslands. A system based on permanent pasture was implemented on three 21-ha farmlets to obtain baseline data on hydrology, nutrient cycling and productivity for 2 years. Since then two farmlets have been modified by either (i) planned reseeding with grasses that have been bred for enhanced sugar content or deep-rooting traits or (ii) sowing grass and legume mixtures to reduce nitrogen fertilizer inputs. The quantities of nutrients that enter, cycle within and leave the farmlets were evaluated with data recorded from sensor technologies coupled with more traditional field study methods. We demonstrate the potential of the farm platform approach with a case study in which we investigate the effects of the weather, field topography and farm management activity on surface runoff and associated pollutant or nutrient loss from soil. We have the opportunity to do a full nutrient cycling analysis, taking account of nutrient transformations in soil, and flows to water and losses to air. The NWFP monitoring system is unique in both scale and scope for a managed land-based capability that brings together several technologies that allow the effect of temperate grassland farming systems on soil moisture levels, runoff and associated water quality dynamics to be studied in detail.
Spatial variation in soil properties and diffuse losses between and within grassland fields with similar short-term management
One of the major challenges for agriculture is to understand the effects of agricultural practices on soil properties and diffuse pollution, to support practical farm-scale land management. Three conventionally managed grassland fields with similar short-term management, but different ploughing histories, were studied on a long-term research platform: the North Wyke Farm Platform. The aims were to (i) quantify the between-field and within-field spatial variation in soil properties by geostatistical analysis, (ii) understand the effects of soil condition (in terms of nitrogen, phosphorus and carbon contents) on the quality of discharge water and (iii) establish robust baseline data before the implementation of various grassland management scenarios. Although the fields sampled had experienced the same land use and similar management for at least 6 years, there were differences in their mean soil properties. They showed different patterns of soil spatial variation and different rates of diffuse nutrient losses to water. The oldest permanent pasture field had the largest soil macronutrient concentrations and the greatest diffuse nutrient losses. We show that management histories affect soil properties and diffuse losses. Potential gains in herbage yield or benefits in water quality might be achieved by characterizing every field or by area-specific management within fields (a form of precision agriculture for grasslands). Permanent pasture per se cannot be considered a mitigation measure for diffuse pollution. The between- and within-field soil spatial variation emphasizes the importance of baseline characterization and will enable the reliable identification of any effects of future management change on the Farm Platform.
Sustainable grassland systems: a modelling perspective based on the North Wyke Farm Platform
The North Wyke Farm Platform (NWFP) provides data from the field- to the farm-scale, enabling the research community to address key issues in sustainable agriculture better and to test models that are capable of simulating soil, plant and animal processes involved in the systems. The tested models can then be used to simulate how agro-ecosystems will respond to changes in the environment and management. In this study, we used baseline datasets generated from the NWFP to validate the Soil-Plant-Atmosphere Continuum System (SPACSYS) model in relation to the dynamics of soil water content, water loss from runoff and forage biomass removal. The validated model, together with future climate scenarios for the 2020s, 2050s and 2080s (from the International Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES): medium (A1B) and large (A1F1) emission scenarios), were used to simulate the long-term responses of the system with three contrasting treatments on the NWFP. Simulation results demonstrated that the SPACSYS model could estimate reliably the dynamics of soil water content, water loss from runoff and drainage, and cut biomass for a permanent sward. The treatments responded in different ways under the climate change scenarios. More carbon (C) is fixed and respired by the swards treated with an increased use of legumes, whereas less C was lost through soil respiration with the planned reseeding. The deep-rooting grass in the reseeding treatment reduced N losses through leaching, runoff and gaseous emissions, and water loss from runoff compared with the other two treatments.
Separating NO production and consumption in intact agricultural soil cores at different moisture contents and depths
Agricultural soils are a major source of the potent greenhouse gas and ozone depleting substance, NO. To implement management practices that minimize microbial NO production and maximize its consumption (i.e., complete denitrification), we must understand the interplay between simultaneously occurring biological and physical processes, especially how this changes with soil depth. Meaningfully disentangling of these processes is challenging and typical NO flux measurement techniques provide little insight into subsurface mechanisms. In addition, denitrification studies are often conducted on sieved soil in altered O environments which relate poorly to field conditions. Here, we developed a novel incubation system with headspaces both above and below the soil cores and field-relevant O concentrations to better represent conditions. We incubated intact sandy clay loam textured agricultural topsoil (0-10 cm) and subsoil (50-60 cm) cores for 3-4 days at 50% and 70% water-filled pore space, respectively. N-NO pool dilution and an SF tracer were injected below the cores to determine the relative diffusivity and the net NO emission and gross NO emission and consumption fluxes. The relationship between calculated fluxes from the below and above soil core headspaces confirmed that the system performed well. Relative diffusivity did not vary with depth, likely due to the preservation of preferential flow pathways in the intact cores. Gross NO emission and uptake also did not differ with depth but were higher in the drier cores, contrary to expectation. We speculate this was due to aerobic denitrification being the primary NO consuming process and simultaneously occurring denitrification and nitrification both producing NO in the drier cores. We provide further evidence of substantial NO consumption in drier soil but without net negative NO emissions. The results from this study are important for the future application of the N-NO pool dilution method and N budgeting and modelling, as required for improving management to minimize NO losses.
The legacy effect of synthetic N fertiliser
Cumulative crop recovery of synthetic fertiliser nitrogen (N) over several cropping seasons (legacy effect) generally receives limited attention. The increment in crop N uptake after the first-season uptake from fertiliser can be expressed as a fraction (∆RE) of the annual N application rate. This study aims to quantify ∆RE using data from nine long-term experiments (LTEs). As such, ∆RE is the difference between first season (RE) and long-term (RE) recovery of synthetic fertiliser N. In this study, RE was assessed either by the N isotope method or by a zero-N subplot freshly superimposed on a long-term fertilised LTE treatment plot. RE was calculated by comparing N uptake in the total aboveground crop biomass between a long-term fertilised and long-term control (zero-N) treatment. Using a mixed linear effect model, the effects of climate, crop type, experiment duration, average N rate, and soil clay content on ∆RE were evaluated. Because the experimental setup required for the calculation of ∆RE is relatively rare, only nine suitable LTEs were found. Across these nine LTEs in Europe and North America, the mean ∆RE was 24.4% (±12.0%, 95% CI) of annual N application, with higher values for winter wheat than for maize. This result shows that fertiliser-N retained in the soil and stubble may contribute substantially to crop N uptake in subsequent years. Our results suggest that an initial recovery of 43.8% (±11%, 95% CI) of N application may increase to around 66.0% (±15%, 95% CI) on average over time. Furthermore, we found that ∆RE was not clearly related to long-term changes in topsoil total N stock. Our findings show that the-often used-first-year recovery of synthetic fertiliser N application does not express the full effect of fertiliser application on crop nutrition. The fertiliser contribution to soil N supply should be accounted for when exploring future scenarios on N cycling, including crop N requirements and N balance schemes.
Applying cover crop residues as diverse mixtures increases initial microbial assimilation of crop residue-derived carbon
Increasing the diversity of crops grown in arable soils delivers multiple ecological functions. Whether mixtures of residues from different crops grown in polyculture contribute to microbial assimilation of carbon (C) to a greater extent than would be expected from applying individual residues is currently unknown. In this study, we used C isotope labelled cover crop residues (buckwheat, clover, radish, and sunflower) to track microbial assimilation of plant residue-derived C using phospholipid fatty acid (PLFA) analysis. We also quantified microbial assimilation of C derived from the soil organic matter (SOM) because fresh residue inputs also prime the decomposition of SOM. To consider the initial stages of residue decomposition, and preclude microbial turnover, we compared a quaternary mixture of residues with the average effect of their four components 1 day after incorporation. Our results show that the microbial biomass carbon (MBC) in the treatment receiving the mixed residue was significantly greater, by 132% (3.61 μg C g), than the mean plant residue-derived MBC in treatments receiving the four individual components of the mixture. However, there was no evidence that the mixture resulted in any additional assimilation of C derived from native SOM than the average observed in individual residue treatments. We surmise that, during the initial stages of crop residue decomposition, a greater biodiversity of residues increases microbial assimilation to a greater extent than would be expected from applying individual residues either due to faster decomposition or greater carbon use efficiency (CUE). This might be facilitated by functional complementarity in the soil microbiota, permitted by a greater diversity of substrates, reducing competition for any single substrate. Therefore, growing and incorporating crop polycultures (e.g., cover crop mixtures) could be an effective method to increase microbial C assimilation in the early stages of cover crop decomposition.
Grazing and topography control nutrient pools in low Arctic soils of Southwest Greenland
Soil nutrient pools in the dry low Arctic are likely to be released under climatic change and this bioavailability has the potential to increase both terrestrial and aquatic productions. As well as the direct effect of warming, external disturbances such as nutrient deposition and grazing can also drive ecosystem change. This study in the low Arctic Kangerlussuaq area of southwest Greenland compared soil nutrient pools in terms of both topographic position on a catena and by soil depth in two small catchments with contrasting muskox abundance. We tested the hypotheses that there were differences between soil carbon (C), nitrogen (N) and phosphorus (P) across a soil catena (ridge - slope - valley) and by soil depth (litter - 0-5 cm - 25-30 cm) for the two sites (SS17b, muskox present, versus - SS85, no muskox). Total C and N concentrations of soils were on average lower at SS17b compared to SS85. Moreover, the soil N concentration increased downslope in the catena with higher amounts in the valleys compared to the slopes and ridges. Soil P concentration (0.70 g P kg) was similar between catchments; however, litter P content was substantially different. The difference in soil nutrients between the two catchments was most likely due to the presence of muskox at SS17b, and hence grazing associated processes (defecation, altered microbiology and nutrient cycling). This study emphasises the heterogeneity of arctic landscapes and need for ecosystem specific research.