Microbial degradation of polyethylene polymer: current paradigms, challenges, and future innovations
Polyethylene (PE) is the second most commonly used plastic worldwide, mainly used to produce single-use items such as bags and bottles. Its significant resistance to natural biodegradation results in the accumulation of PE in landfills, leading to various ecological and toxicological consequences. Despite extensive research on the microbial degradation of PE, achieving complete biodegradation remains a challenge. Comparing experimental outcomes is complicated by the diverse array of microbes involved in PE biodegradation, variations in culture conditions, and differences in assessment tools. This review discusses the critical hurdles in PE biodegradation experiments, including the chemical complexity of PE substrates and the challenges of isolating effective microbes and forming stable consortia. The review also delves into the difficulties in accurately assessing microbial metabolic activity and understanding the biochemical pathways involved in PE degradation. Furthermore, it addresses the pressing issues of metabolic byproducts, slow degradation rates, scalability concerns, and the challenges in measuring biodegradation levels effectively. In addition to outlining the technical challenges associated with PE experiments, this review offers recommendations for future research directions to enhance PE biodegradation outcomes. Overcoming these challenges and implementing the proposed future strategies will improve the reliability, comparability, and practicality of current PE biodegradation experiments, ultimately contributing to better comprehension and management of PE waste in the environment.
Tuning fungal promoters for the expression of eukaryotic proteins
Fungal systems, yeast as well as filamentous fungi, are effective platforms for producing recombinant eukaryotic proteins because of their efficient secretion, robust development features, and capacity for post-translational modification. However, to achieve optimum protein expression in fungal hosts, a precise regulation of gene expression levels is necessary. Promoters are critical cis-regulatory regions that drive gene expression. Therefore, understanding the structure and function of fungal promoters and the factors that influence their performance is an essential step in developing yeast and filamentous fungal platforms as hosts for the expression and secretion of eukaryotic proteins. However, literature on the characterization of filamentous fungal promoters is non-exhaustive. The present review attempts to provide a comprehensive account of available information and future applications of fungal promoters. The properties of promoters from different classes of fungi are discussed with respect to their general structure, the core and proximal components that constitute the fungal promoters, types of fungal promoters based on their functions etc. Furthermore, the utility of fungal promoters for applications in healthcare, biofuels, agriculture and biotechnology are also discussed. The comprehensive understanding of fungal promoters will help in developing tailored promoters, paving the way for the optimum production of economically important eukaryotic proteins in different host organisms.
A label-free DNAzyme-based colorimetric sensor for the detection of Leptospira interrogans
Leptospirosis is a neglected zoonosis caused by a pathogenic spirochete Leptospira. Diagnosis of leptospirosis in the early stage is difficult and can be easily confused with other infections. The existing detection methods are considered chronophagous and labor-intensive. Leptospira survives in the kidney tubules of reservoir animals such as rodents and shed into the environment through their urine. In this study, we developed an Aptamer-DNAzyme-based biosensor for detecting pathogenic Leptospira in environmental water samples. The cell-specific aptamer with an extensive affinity binds to the cell surface proteins to detect the Leptospira interrogans. The DNAzyme that mimics as a peroxidase enzyme, acts as a transducing agent in the colorimetric reaction positively conditioned by the presence of L. interrogans. The Leptospira-specific aptamer coupled with DNAzyme is coated onto carbon nanotubes, to provide a cost-effective nanomaterial-based detection platform. L. interrogans contamination in the samples is detected with a color change of a peroxidase substrate, ABTS. The dissociation constant of the aptazyme was found to be 356.6 nM. The aptazyme system was able to detect up to 119 CFU/mL of L. interrogans exhibiting a high range of selectivity towards the pathogenic spirochete. This simple detection methodology makes the system promising for the environmental monitoring of L. interrogans.
Total carbohydrate consumption through co-fermentation of agro-industrial waste: use of wild-type bacterial isolates specialized in the conversion of C-5 sugars to high levels of lactic acid with concomitant metabolization of toxic compounds
Value-added bioproducts are linked to the expansion of lignocellulosic biorefineries based on agro-industrial waste and local economic growth. Thus, the aim of this study was to pretreat rice hull (RH), a highly recalcitrant biomass, with saturated steam and convert it to lactic acid (LA). Strategically, the individual fractions and the blend of detoxified liquor and water-insoluble solids were used as substrate in the simultaneous saccharification and co-fermentation (SSCF) by wild-type bacteria. The microbial consortium between Pediococcus acidilactici and Acetobacter cerevisiae enabled the metabolization of all the xylose contained in the liquor, as well as the consumption of all minor sugars when using the blend. Assays resulted in the production of 106.2 g L of LA. Furthermore, A. cerevisiae promoted complete degradation of 5-HMF/furfural in a short period of time. This study demonstrates the benefits provided by processes integration (SSCF/blend) employing high solids load (22% w/v), representing an innovative and economically interesting approach.
Uptake of lead, cadmium and copper by heavy metal-resistant Pseudomonas aeruginosa strain DR7 isolated from soil
This study highlights the biosorption capacity for Cd (II), Cu (II) and Pb (II) by a locally isolated Pseudomonas aeruginosa DR7. At initial concentrations of 150 mg L and 240 min of contact time, P. aeruginosa DR7 showed a 62.56 mg/g removal capacity for Cd (II) at an optimum pH of 6.0, 72.49 mg/g for Cu (II) at an optimum pH of 6.0, and 94.2 mg/g for Pb (II) at an optimum pH of 7.0. The experimental data of Cd (II), Cu (II), and Pb (II) adsorbed by the pseudo-second-order kinetic model correlates well with P. aeruginosa DR7, with R all above 0.99, showing that the fitting effect was satisfactory. The isothermal adsorption processes of Cd (II) (0.980) and Cu (II) (0.986) were more consistent with the Freundlich model, whereas Pb (II) was more consistent with the Langmuir model (0.978). FTIR analysis suggested the involvement of hydroxyl, carbonyl, carboxyl, and amine groups present in the inner regions of P. aeruginosa cells during the biosorption process. SEM-EDS analysis revealed that after contact with metals, there were slight changes in the surface appearance of the cells, which confirmed the deposition of metals on the bacterial surface. There was also the possibility of the metals being translocated into the bacterial inner regions by the appearance of electron-dense particles, as observed using TEM. As a conclusion, the removal of metals from solutions using P. aeruginosa DR7 was a plausible alternative as a safe, cheap, and easily used biosorbent.
Unlocking the potential of Cupriavidus necator H16 as a platform for bioproducts production from carbon dioxide
The rapid global increase in fossil fuel and energy consumption has resulted in the accumulation of greenhouse gases, especially carbon dioxide (CO), thus contributing to climate change. Therefore, transforming CO into valuable products could yield beneficial outcomes. In this review, the capabilities of Cupriavidus necator H16, a light-independent chemoautotrophic bacterium, as a host platform for the transformation of CO into diverse products are explored. We begin by examining the progress in synthetic biology toolkits, gas fermentation technologies, and engineering approaches, considering the chemoautotrophic metabolic traits of C. necator to enhance the capacity of the strain for CO fixation. Additionally, recent research focused on the metabolic engineering of C. necator H16 for the conversion of CO into biodegradable plastics, biofuels, bioactive compounds, and single-cell proteins was reviewed. Finally, we address the limitations affecting the advancement and utilization of C. necator H16 strain, such as inefficiencies and the range of product types, and offer several recommendations for enhancement. This review acts as a resource for the development of C. necator H16 cell factories and the industrial manufacture of products derived from CO.
Synergistic effects of gamma irradiation/salmide®, a sodium chlorite-based oxy-halogen, on microbiological control and the shelf life of chicken breasts
A novel portable chamber was developed to extend the shelf life of chicken breasts through a synergistic treatment of gamma irradiation and Salmide®, a sodium chlorite-based oxy-halogen. This combination successfully enhanced the shelf life by utilizing a low dosage of gamma irradiation alongside low concentrations of Salmide (200 ppm sodium chlorite). Fresh chicken breast samples were treated with gamma irradiation, then packed in ice containing Salmide within the portable chamber, and subsequently stored for 20 days in a refrigerator at 4 °C ± 1. The study investigated aerobic bacterial counts, sensory analysis, and Thiobarbituric acid (TBA) levels. Results showed that Salmide alone significantly reduced microbial counts and extended shelf life by 8 days. Gamma irradiation at 1 kGy, either alone or combined with Salmide, caused a sequential reduction in total aerobic bacterial counts by 2,3 logarithmic cycles, respectively, extending the storage period to 12 days. Furthermore, a 16 day shelf life extension was achieved with gamma irradiation at 3 kGy, either alone or in combination with Salmide, resulting in a reduction of total aerobic bacteria by 5 logarithmic cycles. This study is the first to employ Salmide in conjunction with gamma irradiation as an innovative technology in a portable chamber to enhance the safety and shelf life of chicken breasts during storage in the designed portable chamber.
Correction: Identification and biochemical characterization of a novel halolysin from Halorubellus sp. PRR65 with a relatively high temperature activity
Taxonomic and functional profiling of microbial community in municipal solid waste dumpsite
Understanding the microbial ecology of landfills is crucial for improving waste management strategies and utilizing the potential of these microbial communities for biotechnological applications. This study aimed to conduct a comprehensive taxonomic and functional profiling of the microbial community present in the Addis Ababa municipal solid waste dumpsite using a shotgun metagenomics sequencing approach. The taxonomic analysis of the sample revealed the significant presence of bacteria, with the Actinomycetota (56%), Pseudomonadota (23%), Bacillota (3%), and Chloroflexota (3%) phyla being particularly abundant. The most abundant KEGG categories were carbohydrates metabolism, membrane transport, signal transduction, and amino acid metabolism. The biodegradation and metabolism of xenobiotics, as well as terpenoids and polyketides, were also prevalent. Moreover, the Comprehensive Antibiotic Resistance Database (CARD) identified 52 antibiotic resistance gene (ARG) subtypes belonging to 14 different drug classes, with the highest abundances observed for glycopeptide, phosphonic acid, and multidrug resistance genes. Actinomycetota was the dominant phylum harboring ARGs, followed by Pseudomonadota and Chloroflexota. This study offers valuable insights into the taxonomic and functional diversity of the microbial community in the Addis Ababa municipal solid waste dumpsite. It sheds light on the widespread presence of metabolically versatile microbes, antibiotic resistance genes, mobile genetic elements, and pathogenic bacteria. This understanding can contribute to the creation of efficient waste management strategies and the investigation of possible biotechnological uses for these microbial communities.
Unveiling the chromate stress response in the marine bacterium Bacillus enclensis AGM_Cr8: a multifaceted investigation
In this study, we introduce Bacillus enclensis AGM_Cr8, a gram-positive marine bacterium isolated from the chronically polluted Versova Creek in Mumbai, India. AGM_Cr8 exhibits robust tolerance to chromate stress, thriving in marine agar media containing up to 3200 mg/l of hexavalent chromium [Cr(VI)], with the Minimum Inhibitory Concentration (MIC) established at 5000 mg/l. Notably, AGM_Cr8 also displays tolerance to other heavy metals, including Lead [Pb (II)] (1200 mg/l), Arsenic [As (III)] (400 mg/l), Cadmium [Cd(II)] (100 mg/l), and Nickel [Ni(II)] (100 mg/l). Scanning Electron Microscopy (SEM) reveals the presence of Cr(VI) on the bacterial surface, accompanied by the secretion of extracellular polymeric substances (EPSs) facilitating Cr(VI) sequestration. This observation is validated through Energy Dispersive Spectroscopy (EDS). Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy (STEM-EDS) confirm internal bioaccumulation of Cr(VI). X-ray photoelectron spectroscopy (XPS) identifies distinct peaks around 579 and 576 eV, indicating the coexistence of Cr(VI) and Cr(III), implying a bioreduction mechanism. De novo genome sequencing identifies twenty-two chromate-responsive genes, including putative chromate transporters (srpC1 and srpC2), suggesting an efflux mechanism. Other identified genes encode NAD(P)H-dependent FMN-containing oxidoreductase, NADH quinone reductase, ornithine aminotransferase, transporter genes (natA, natB, ytrB), and genes related to DNA replication and repair (recF), DNA mismatch repair (mutH), and superoxide dismutase. We therefore, propose a chromate detoxification pathway that involves an interplay of chromate transporters, enzymatic reduction of Cr(VI) to Cr(III), DNA repair and role of antioxidants in response to chromate stress. We have highlighted the potential of AGM_Cr8 for bioremediation in chromium-contaminated environments, given its robust tolerance and elucidated molecular mechanisms for detoxification.
Biotransformation of enrofloxacin-copper combined pollutant in aqueous environments by fungus Cladosporium cladosporioides (CGMCC 40504)
The combined pollution of antibiotics and heavy metals in aqueous environments increases the risk of aquatic ecosystem disruption and the complication of pollutant management. Here, a fungus Cladosporium cladosporioides 11 (CC11) isolated from aquaculture pond sediments possessed effective capacities to biotransform the combined pollution of enrofloxacin (ENR) and copper ion (Cu). ENR and Cu were considerably abated by CC11, and the presence of Cu (30 mg/L) promoted the biotransformation efficiency of ENR. The biotranformation of ENR in ENR-Cu co-contamination was associated to ligninolytic enzyme action. The expression of ligninolytic enzymes was enhanced by ENR and ENR-Cu combined pollution. And the increased activities of ligninolytic enzymes confirmed the significant role of enzymatic transformation. Cu played an important role in increasing the expression and activities of ligninolytic enzymes. The expressions of many genes associated with transporters, phosphate assimilation, oxidative phosphorylation, hyperosmotic stress and pectin metabolism were significantly up-regulated when facing Cu-stress, indicating their important roles in determining Cu removal and enhancing Cu-resistance. Additionally, CC11 significantly biotransformed other antibiotic and heavy metal combined pollution. All these results contributed to the applications of CC11 in aqueous environments.
In silico characterization of Rhodotorula toruloides ELO-like elongases and production of very-long-chain fatty acids by expressing Rtelo2, RtKCR, RtHCD, and RtECR through IRES-mediated bicistrons
Rhodotorula toruloides, an oleaginous yeast known for its high lipid productivity, produces lipids with low very-long-chain fatty acid (VLCFA) content. Meanwhile, the roles of enzymes, particularly the condensing enzymes, involved in VLCFA biosynthesis in R. toruloides remained unclear. In this study, two elongases, RtELO1 and RtELO2, were identified from R. toruloides U13N3 and their tertiary structure and catalytic mechanism were investigated using molecular dynamic methods. Both enzymes exhibited typical ELO-like characteristics, with active sites located within cavities formed by seven transmembrane helixes. RtELO2 displayed higher binding affinity to acyl-CoAs compared to RtELO1, and at least seven amino acid residues, including two crucial histidines in the "HXXHH" box, were identified as important for the condensation reaction. To enhance VLCFA production, an internal ribosome entry site (IRES)-mediated bicistronic strategy was developed to integrate multiple genes into the R. toruloides genome. The efficiency of IRES-mediated translation initiation reached 85.4% of cap-dependent upstream translation, based on EGFP fluorescent intensity. Using this strategy, four genes encoding enzymes involved in the VLCFA biosynthesis cycle (Rtelo2, RtKCR, RtHCD, and RtECR) were introduced into the U13N3 genome in various combinations. The results indicated that the expression of a single elongase had a modest effect on VLCFA production, but the simultaneous expression of multiple genes resulted in cumulative effects. Notably, the transformant harboring four genes exhibited a remarkable 436.8% increase in C22 and C24 VLCFA yield compared to the original strain.
Rhamnolipid production from waste cooking oil by a newly isolated thermo- and salt-tolerant Pseudomonas aeruginosa GH01
Biological treatment has become a promising approach for the efficient remediation of WCO. Identifying effective oil-degrading microorganisms is critical for optimizing these processes. This study focuses on isolating thermo- and salt-tolerant microbes capable of utilizing WCO as a carbon source for the production of high-value compounds. A newly isolated strain of Pseudomonas aeruginosa GH01 demonstrated exceptional degradation of over 92% of WCO at a concentration of 22 g/L within 5 days, producing 1011.2 mg/L of rhamnolipids. Notably, P. aeruginosa GH01 exhibited tolerance to NaCl concentrations up to 40 g/L and grew optimally at 45 °C, which is higher than that of most other P. aeruginosa strains. The strain also secreted thermotolerant lipases, with a half-life (T) of 75 °C for 15 min. These characteristics make P. aeruginosa GH01 a promising candidate for the bioremediation of WCO and the production of valuable biosurfactants like rhamnolipids. The ability to thrive in high salt and temperature environments also suggests its potential for industrial-scale applications, particularly in the WCO biodegradation and biosurfactant production industries.
Microbiome interactions: Acinetobacter baumannii biofilms as a co-factor in oral cancer progression
Acinetobacter baumannii (A. baumannii) has long been recognized primarily as a hospital-acquired pathogen. However, recent studies have uncovered a potential link between this bacterium and oral cancer, necessitating a deeper exploration of this relationship. This review examines the relevance of A. baumannii biofilms in the context of oral cancer development. By synthesizing current knowledge, we seek to provide a comprehensive understanding of this emerging area of research and identify critical directions for future investigations. The review emphasizes the remarkable adaptability, environmental resilience, and antibiotic resistance of A. baumannii, delves into the molecular mechanisms of biofilm formation, and their potential connection to oral cancer progression. The review also evaluates how biofilm colonization on oral surfaces and medical devices, along with its role in chronic infections, inflammation, and increased antimicrobial resistance, could contribute to creating a microenvironment favourable for tumor development. This review underscores the broader healthcare implications of A. baumannii biofilms, evaluates current strategies for their prevention and eradication, and calls for interdisciplinary research in this emerging field. By shedding light on the complex interactions between A. baumannii biofilms and oral cancer, it aims to stimulate further research and guide the development of new diagnostic, preventive, and therapeutic strategies in both microbiology and oncology.
Competition-driven phenotypic plasticity in Iron acquisition and aromatic utilization confers a fitness advantage to Pseudomonas putida in an Iron-limited rhizospheric environment
Iron scarcity poses a critical challenge for rhizospheric bacteria like Pseudomonas putida in the competitive rhizosphere. Despite its dependence on iron for essential functions such as root colonization, motility, and aromatic compound utilization, P. putida exhibits limited capability for heterologous siderophore utilization and primarily relies on the secretion of a single siderophore, pyoverdine. This study investigates the mechanisms by which P. putida acquires iron in an iron-limited, aromatic-rich, rhizosphere-like environment. Our findings demonstrate that P. putida exhibits significant phenotypic plasticity, dynamically modulating pyoverdine secretion in response to competitive pressures and substrate availability. This adaptive strategy optimizes energy expenditure and iron acquisition, providing a competitive advantage. Comparative gene expression analysis supports these observations, revealing the molecular underpinnings of this plasticity. Enhanced pyoverdine production driven by competition compensates for the bacterium's limited siderophore repertoire and facilitates rapid aromatic compound utilization, conferring a distinct fitness advantage in iron-deprived conditions. This study elucidates the complex interplay between competition, iron uptake, and aromatic compound utilization that underpins the rhizospheric success of P. putida.
Optimization and purification of a novel calcium-independent thermostable, α-amylase produced by Bacillus licheniformis UDS-5
Microbial amylases should essentially remain active at higher temperatures, and in the alkaline pH and a range of surfactants to be suitable as detergent additives. In the present study, a thermophilic amylase producing bacterium, Bacillus licheniformis UDS-5 was isolated from Unai hot water spring in Gujarat, India. It was identified as a potent amylase producer during starch plate-based screening process. Therefore, the physicochemical parameters influencing amylase production were optimized using Plackett-Burman design and Central Composite Design. The amylase was purified through ammonium sulfate precipitation, size exclusion and ion exchange chromatography, achieving the purification fold and yield to be 9.2 and 40.6%, respectively. The enzyme displayed robust stability and activity across a wide range of temperatures and pHs, with an increased half-life and reduced deactivation rate constant. The amylase exhibited optimal catalysis at 70 °C and pH 8. The kinetic studies revealed Km and Vmax values of 0.58 mg/mL and 2528 μmol/mL/min, respectively. Besides, the purified amylase displayed stability in the presence of various metal ions, surfactants, and chelators suggesting its potential for industrial applications, particularly in the detergent industry. Moreover, detergent application studies demonstrated its efficacy in enhancing washing performance. A comparative profile on washing efficiency of the studied amylase and the commercial amylase with various detergents pointed towards its possible future use as a detergent additive.
Research progress on the function and regulatory pathways of amino acid permeases in fungi
Nitrogen sources are pivotal for the formation of fungal mycelia and the biosynthesis of metabolites, playing a crucial role in the growth and development of fungi. Amino acids are integral to protein construction, constitute an essential nitrogen source for fungi. Fungi actively uptake amino acids from their surroundings, a process that necessitates the involvement of amino acid permeases (AAPs) located on the plasma membrane. By sensing the intracellular demand for amino acids and their extracellular availability, fungi activate or suppress relevant pathways to precisely regulate the genes encoding these transporters. This review aims to illustrate the function of fungal AAPs on uptake of amino acids and the effect of AAPs on fungal growth, development and virulence. Additionally, the complex mechanisms to regulate expression of aaps are elucidated in mainly Saccharomyces cerevisiae, including the Ssy1-Ptr3-Ssy5 (SPS) pathway, the Nitrogen Catabolite Repression (NCR) pathway, and the General Amino Acid Control (GAAC) pathway. However, the physiological roles of AAPs and their regulatory mechanisms in other species, particularly pathogenic fungi, merit further exploration. Gaining insights into these aspects could reveal how AAPs facilitate fungal adaptation and survival under diverse stress conditions, shedding light on their potential impact on fungal biology and pathogenicity.
Galactose-1-phosphate uridylyltransferase GalT promotes biofilm formation and enhances UV-B resistance of Bacillus thuringiensis
Ultraviolet radiation (UV) is a major abiotic stress resulting in relative short duration of Bacillus thuringiensis (Bt) biopesticides in the field, which is expected to be solved by formation of Bt biofilm with higher UV resistance. Therefore, one of the important prerequisite works is to clarify the functions of biofilm-associated genes on biofilm formation and UV resistance of Bt. In this study, comparative genomics and bioinformatic analysis indicated that BTXL6_19475 gene involved in biofilm formation of Bt XL6 was likely to encode a galactose-1-phosphate uridylyltransferase (GalT, E.C. 2.7.7.12). Heterologous expression of the BTXL6_19475 gene in Escherichia coli and detection of its GalT enzyme activity in vitro proved that the gene did encode GalT. Comparing the wild type Bt strain XL6 with galT gene knockout mutant Bt XL6ΔgalT and its complementary strain Bt XL6ΔgalT::19,475, GalT promoted the biofilm formation and enhanced the UV-B resistance of Bt XL6 likely by increasing its D-ribose production and reducing its alanine aryldamidase activity. GalT did not affect the growth and the cell motility of Bt XL6. A regulation map had been proposed to elucidate how GalT promoted biofilm formation and enhanced UV-B resistance of Bt XL6 by the cross-talk between Leloir pathway, Embden-Meyerhof glycolysis pathway and pentose phosphate pathway. Our finding provides a theoretical basis for the efficient use of biofilm genes to improve the UV resistance of Bt biofilms and thus extend field duration of Bt formulations based on biofilm engineering.
Antifungal efficacy and biofumigation potential of hydrophobic deep eutectic solvents: Postharvest treatment against Monilinia fructicola and Botrytis Cinerea
Hydrophobic Deep Eutectic Solvents (HDES), as a subclass of Natural Deep Eutectic Solvents (NADES), present a green-chemistry alternative to toxic chemicals. As HDES are based on terpenoids, these solvents could potentially be effective antifungal agents against phytopathogens Monilinia fructicola and Botrytis cinerea that frequently cause diseases in sweet cherry fruit. To contribute to the disease prevention and management goals, as a part of this study, 30 different HDES were tested in the vapor phase, at identical concentrations of 25%, 50%, and 100%. In vitro experiments were conducted on Potato Dextrose Agar medium (PDA), while in planta experiments were carried out in hermetically sealed containers with inoculated sweet cherry fruits. All tested HDES demonstrated efficacy in suppressing the growth of M. fructicola colonies (66 - 100%) and B. cinerea colonies (37 - 100%). According to the Area Under the Disease Progress Curve (AUDPC), all HDES exhibited high efficacy in preventing disease occurrence in cherry fruits by the tested phytopathogens. This research provides the first insights into the antifungal potential of HDES in the vapor phase, with promising applications as biofumigants that minimize harmful impacts on the food - human - environment complex.
Presence of lactic acid bacteria in hydrogen production by dark fermentation: competition or synergy
Dark fermentation in mixed cultures has been extensively studied due to its great potential for sustainable hydrogen production from organic wastes. However, microbial composition, substrate competition, and inhibition by fermentation products can affect hydrogen yield and production rates. Lactic acid bacteria have been identified as the key organisms in this process. On one hand, lactic acid bacteria can efficiently compete for carbohydrate rich substrates, producing lactic acid and secreting bacteriocins that inhibit the growth of hydrogen-producing bacteria, thereby decreasing hydrogen production. On the other hand, due to their metabolic capacity and synergistic interactions with certain hydrogen-producing bacteria, they contribute positively in several ways, for example by providing lactic acid as a substrate for hydrogen generation. Analyzing different perspectives about the role of lactic acid bacteria in hydrogen production by dark fermentation, a literature review was done on this topic. This review article shows a comprehensive view to understand better the role of these bacteria and their influence on the process efficiency, either as competitors or as contributors to hydrogen production by dark fermentation.
Biofilm and Extracellular Polymeric Substance (EPS) synergy: Revealing Staphylococcus's role in nitrate bioremediation
Staphylococcus species, traditionally associated with pathogenicity, are gaining attention for their role in environmental bioremediation, particularly nitrate reduction, which is crucial for mitigating eutrophication. In this study, denitrifying, biofilm-forming Staphylococcus strains were isolated from Dal Lake, India. Biofilm formation was quantified using a microtiter plate assay, and extracellular polymeric substances (EPS) were measured by dry weight. Statistical analysis revealed a strong positive correlation between EPS production and nitrate removal efficiency (r = 0.96, p < 0.001), with EPS accounting for 92% of the variance in nitrate reduction (R = 0.92). Among the isolates, Staphylococcus epidermidis exhibited the highest nitrate reduction at 87% (SD = 2.3%), followed by S. succinus at 83% (SD = 2.1%), S. equorum at 77% (SD = 2.5%), and Staphylococcus sp. at 70% (SD = 2.8%). The consistency of these findings was confirmed by boxplot analysis, and the regression model's robustness was validated by residual plots showing minimal systematic error. This research work provides the first evidence of the nitrate-reducing capabilities of these Staphylococcus species, underscoring their potential in sustainable bioremediation strategies for aquatic environments. The significant correlation between EPS production and nitrate reduction highlights the critical role of biofilms in enhancing microbial remediation processes. The study not only advances the understanding of Staphylococcus in non-pathogenic roles but also suggests that these strains could be pivotal in bioremediation technologies, potentially influencing future environmental management practices.