Chemical Engineering and Processing-Process Intensification

Continuous Extraction of 2-Chloroethyl isocyanate for 1-(2-chloroethyl)-3-cyclohexylurea Purification
Mackey J, Grover D, Pruneda G, Zenk E and Nagy ZK
This study details the development of simulation-aided design, development, and successful operation of a continuous liquid-liquid extraction platform made with 1.5 mm tubing for the extraction of 2-chloroethyl isocyanate, an important reagent in the synthesis of cancer drugs. Preliminary solvent screening was carried out with partition coefficient calculations to determine solvents of interest. Next, batch and flow extraction experiments of 2-chloroethyl isocyanate in 2-methyl tetrahydrofuran and water were conducted to estimate extraction parameters. Following parameter estimation, experimental and model values for Ka were determined in the range of 1.13×10 to 36.0×10 s. Simulations of the extraction of 2-chloroethyl isocyanate were found to agree with experimental data resulting in a maximum efficiency of 77% and percent extraction of 69% for the continuous platform. Finally, model selection and discrimination was implemented for design space generation with experimental and model determined Ka values to guide lab-scale operation.
Optimal waste management during the COVID-19 pandemic
Munguía-López ADC, Ochoa-Barragán R and Ponce-Ortega JM
There have been many problems generated by the COVID-19 pandemic. One of them is the worrying increase in the generation of medical waste due to the great risk they represent for health. Therefore, this work proposes a mathematical model for optimal solid waste management, proposing a circular value chain where all types of waste are treated in an intensified industrial park. The model selects the processing technologies and their production capacity. The problem was formulated as a mixed-integer linear programming problem to maximize profits and the waste processed, minimizing environmental impact. The proposed strategy is applied to the case study of the city of New York, where the increase in the generation of medical waste has been very significant. To promote recycling, different tax rates are proposed, depending on the amount of waste sent to the landfill. The results are presented on a Pareto curve showing the trade-off between profits and processed waste. We observed that the taxes promote recycling, even of those wastes that are not very convenient to recycle (from an economic point of view), favoring profits, reducing the environmental impact, and the risk to health inherent to the medical waste.
Spiral column configuration for protein separation by high-speed countercurrent chromatography
Ito Y
Retention of the stationary phase of aqueous-aqueous polymer phase systems is improved by a spiral column configuration which utilizes the radially acting centrifugal force along the spiral pitch to retain the heavier phase in the outer portion and the lighter phase in the inner portion of the spiral channel. For the separation of proteins which has low mass transfer rates, the system needs further modification of the separation channel to interrupt the laminar flow and enhance mixing of the two phases. Two spiral column assemblies were developed, one using a disk with spiral grooves and the other, the spiral tube support which accommodates the multiple spiral layers made from a single piece of fluorinated plastic tubing. In the spiral disk assembly, the best protein separation is achieved by the mixer-settler system which vigorously mixes two phases by vibrating glass beads placed in every other section of barricaded spiral channel, while in the spiral tube assembly the partition efficiency of proteins is enhanced by compressing the tubing to interrupt the laminar flow of the mobile phase. In both systems protein samples were well resolved by choosing the suitable elution modes.