TOXICOLOGY LETTERS

Fu W, Liu M, Wang Y, Yang H, Ye A, Wu J, Li Y, Yu Z, Qiu Y and Xu L
Nano-titanium dioxide (Nano-TiO) is extensively utilized across various industries and has the capacity to penetrate human tissues through multiple biological barriers. The HaCaT cell line, as one of human immortalized keratinocytes, is usually used as a model for studying skin drug toxicology. The objective was to assess the toxic effects of nano-TiO on HaCaT cells and to trigger pyroptosis. We used MTT method to evaluate the effects of three nano-TiO particle sizes (15 nm, 30 nm and 80 nm) on cell viability at different concentrations. Subsequently, we used LDH, Hoechst 33342 and propidium iodide (PI) double staining, scanning electron microscopy (SEM), Western blotting (WB) and real-time quantitative polymerase chain reaction (RT-qPCR) to evaluate the effects of different particle sizes on cells at the same concentration. Our findings indicated that HaCaT cell viability diminished with increasing nano-TiO concentrations. Moreover, nano-TiO increased LDH level in cellular supernatant. Fluorescence double staining, SEM, WB and RT-qPCR showed that nano-TiO induced cell membrane damage by activating pyroptosis pathway of NLRP3/caspase-1/GSDMD. These results suggest that nano-TiO toxicity in HaCaT cells is influenced by both dose and particle size, and is associated with the induction of pyroptosis. Frequent and large exposures to nano- TiO in daily life may cause serious health hazards.
Activation of mixed lineage kinase 3 by fine particulate matter induces skin inflammation in human keratinocytes
Koo J, Sim WJ, Lim W and Lim TG
Fine particulate matter (PM) induces a range of diseases, including skin disorders, through inflammatory responses. In this study, we investigated the novel mechanisms by which PM causes skin inflammation in human keratinocytes HaCaT. We observed increased protein expression of cyclooxygenase-2 (COX-2) and the production of prostaglandin E2 (PGE2) in PM-treated HaCaT cells. To identify the pathways promoting the expression of these inflammatory proteins, we conducted a phospho-kinase antibody array and confirmed that the phosphorylation levels of JNK and p38 were increased by PM-treated HaCaT cells. Further investigation of the phosphorylation levels of mitogen-activated protein kinases (MAPKs) and upstream signals revealed that PM activated the MKK4/7-JNK-c-Jun and MKK3/6-p38-p70 signaling pathways, while the phosphorylation level of ERK1/2 remained unchanged. HaCaT cells treated with PM phosphorylated Mixed-lineage kinase 3 (MLK3), an upstream regulator of p38 and JNK. Furthermore, inhibition of ROS production by N-Acetylcysteine (NAC) treatment inhibited MLK3 phosphorylation. Taken together, ROS production induced by PM activated the MLK3 signaling pathway and induced skin inflammation.
STEROID HORMONES, VITAMIN D AND MELATONIN IN RAPIDLY ROTATING SHIFT FEMALE HOSPITAL WORKERS
Silvia F, Rosa M, Elisa P, Dario C, Laura C, Gianfranco F, Eleonora C and Giovanni C
Disruption of circadian rhythm caused by night-shift work has been associated with several disorders, including cancer. Health care personnel often works at night to insure the continuity of care. Aim of this study was to evaluate the influence of night-shift work on serum and saliva levels of steroid hormones, vitamin D, and melatonin in hospital female workers. Ninety-seven female hospital workers were recruited: 46 nurses performing clockwise rapid rotating shift schedule on a 5-day cycle, including one night, and 51 day workers. Thirteen steroid hormones and vitamin D were assessed in morning serum samples; cortisol, cortisone and melatonin were assessed in morning and evening saliva samples. We fitted multiple regression models adjusted for age, BMI, sampling month, ovarian cycle phase, and use of oral contraceptives (OC). Rapidly rotating clockwise shift work was associated with increased levels of serum corticosterone, 11-deoxycortisol, dehydroepiandrosterone (DHEA), and androstenedione, and decreased levels of estradiol and vitamin D. OC modulated the association between serum cortisol, corticosterone and 11-deoxycortisol and work shift. The normal circadian phase of salivary melatonin, cortisol and cortisone was not affected by shift work. In female hospital nurses, the clockwise rapid rotating shift schedule increases the level of some hormones, likely associated with stress. No increase of estradiol, nor modification of salivary hormones was observed.
Review of the genotoxicity of "Arvin compounds", drinking water contaminants formed by the degradation of antoxidants in polyolefin pipes
Dekant W
Polyolefin pipes used in drinking water distribution systems require a number of functional additives to ensure stability and durability. Some of these additives and/or their degradation products may migrate from the pipes into the drinking water. Previously, a number of branched chain alkylphenol degradants have been identified in drinking water; these were termed "Arvin substances" and numbered Arvin 1-10. As potential genotoxicity is a human health safety concern, the genotoxicity of Arvin substances is reviewed based on comprehensive in vitro and in vivo data available. Results obtained from genotoxicity studies addressing mutagenicity and clastogenicity are available for nine of the ten Arvin substances. These nine Arvin substances were consistently negative in bacterial mutagenicity studies. Divergent results were obtained in clastogenicity assays with some positive responses induced by the branched chain alkylphenols Arvin 1, 2, and 4, often accompanied by significant cytotoxicity. However, Arvin 1, 2, and 4 did not induce micronuclei or genotoxicity in vivo during follow-up testing. The other Arvin compounds did not show genotoxic activity in vitro. In conclusion, regarding human health risk characterization, the Arvin compounds are not considered genotoxic agents based on the available data.
Dose-, stage- and sex- difference of prenatal prednisone exposure on placental morphological and functional development
Zha X, Fang M, Zhong W, Chen L, Feng H, Zhang M, Wang H and Zhang Y
Prednisone, a synthetic glucocorticoid, is commonly used to treat autoimmune diseases in pregnant women. However, some studies suggest that the use of prednisone during pregnancy may lead to adverse pregnancy outcomes. In this study, we established PPE mouse models at different doses (0.25, 0.5, 1.0 mg/kg·d) and different stages (whole pregnancy, early pregnancy and middle-late pregnancy) and determined outcomes on the placenta and fetus. The results of our study indicated that at the highest dose of 1 mg/kg PPE using a GD 0-18 dosing regime, PPE caused placental morphological changes measured as a decrease in placental weight relative to controls and a decrease in the placenta junctional zone (JZ)/labyrinth zone (LZ) ratio. No changes were observed on the fetuses for number of live, stillborn, and absorbed fetuses between the experimental groups and the control group. In the placentas at some doses, there were decreases in cell proliferation markers measured at the RNA and protein level by Western blot and increased apoptosis. Measures of gene expression at the mRNA level showed altered nutrients (including glucose, amino acid, and cholesterol) transport gene expressions with the most significant change associated with the male placentas at high-dose and whole pregnancy PPE group. It was further found that PPE led to the inhibition of the insulin-like growth factor 2 (IGF2)/insulin-like growth factor 1 receptor (IGF1R) signaling pathway, which was well correlated with the indicators of cell proliferation, syncytialization and nutrient (glucose and amino acid) transport indices. In conclusion, PPE can alter placental morphology and nutrient transport function, with differences in effect related to dose, stage and gender. Differential gene expressions measured for genes of the IGF2/IGF1R signaling pathway suggested this pathway may be involved in the effects seen with PPE. This study provides a theoretical and experimental basis for enhancing the understanding of the effects of prednisone use on placenta during human pregnancy but does not currently raise concerns for human use as effects were not seen on the fetuses and while the effects on cell proliferation are informative they were inconsistent and the differential effects on female and male placentas unexplained suggesting that further work is required to elucidate if these findings have relevance for human use of PPE during pregnancy.
An overview of immunotoxicity in drug discovery and development
Nandre RM and Terse PS
The immune system is one of the common targets of drugs' toxicity (Immunotoxicity) and/or efficacy (Immunotherapy). Immunotoxicity leads to adverse effects on human health, which raises serious concerns for the regulatory agencies. Currently, immunotoxicity assessment is conducted using different in vitro and in vivo assays. In silico and in vitro human cell-based immunotoxicity assays should also be explored for screening purposes as these are time and cost effective as well as for ethical reasons. For in vivo studies, tier 1-3 assessments (Tier 1: hematology, serum globulin levels, lymphoid organ's weight and histopathology; Tier 2: immunophenotyping, TDAR and cell mediated immunity; and Tier 3: host resistance) should be used. These non-clinical in vivo assessments are useful to select immunological endpoints for clinical trials as well as for precautionary labeling. As per regulatory guidelines, adverse immunogenicity information of drug should be included in product's labeling to make health care practitioner aware of safety concerns before prescribing medicines and patient management (USFDA, 2022a, 2022b). This review mainly focuses on the importance of immunotoxicity assessment during drug discovery and development.
Evaluating applicability domain of acute toxicity QSAR models for military and industrial chemical risk assessment
Fisher JL, Yamada K, Keebaugh AJ, Williams KT, German CL, Hott AM, Singh N and Clewell RA
Quantitative Structure-Activity Relationship (QSAR) models can be used to predict the risk of novel and emergent chemicals causing adverse health outcomes, avoidance of which is crucial for military operations. While QSAR modeling approaches have been proposed for military and industry risk assessment, the applicability of peer-reviewed tissue-specific QSAR models in military and industrial contexts remain largely unexplored, particularly with respect to specific organ toxicity. We investigated the applicability domain (AD) of acute and sub-chronic tissue-specific QSAR models to evaluate the coverage of military- and industrial-relevant chemicals. Our analysis reveals that military-relevant compounds occupy a similar chemical space as industrial compounds. However, published models for acute target organ toxicity had minimal coverage of the military and industrial chemicals. The published Collaborative Acute Toxicity Modeling Suite (CATMoS) acute oral toxicity model was the notable exception, as it covers a broad range of military and industrial chemicals. Our study underscores the urgent need for development of novel tissue-specific QSAR models, or modification of existing models, to improve chemical risk prediction in both industrial and military applications.
Activation of Wnt/β-catenin signaling to increase B lymphoma Moloney murine leukemia virus insertion region 1 by lithium chloride attenuates the toxicity of cisplatin in the HEI-OC1 auditory cells
Lu C, Chen C, Xu Y, Dai D, Sun C and Li Q
Cisplatin is widely used in anti-tumor therapy, but the ototoxicity caused by high-dose cisplatin often limits its efficacy, and the specific mechanism of cisplatin-induced cochlear damage is still not perfect. The Wnt/β-catenin signaling pathway is closely related to aging, embryonic development, and apoptosis. Meanwhile, B lymphoma Moloney murine leukemia virus insertion region 1 (BMI1) plays a certain role in the evolution and development of the inner ear and the occurrence and development of inner ear-related diseases. Our study intends to explore the role and specific mechanism of the Wnt/β-catenin signaling pathway and BMI1 in improving cisplatin ototoxicity. The appropriate experimental concentrations for each drug were selected by CCK-8 cell proliferation assay and Western Blot to detect apoptosis. The lentivirus transfection of HEI-OC1 cochlear hair cells was used to overexpress BMI1. Western Blot, qPCR, and immunofluorescence detected the activation of each component of BMI1 and Wnt/β-catenin signaling pathway in each experimental model. Wnt/β-catenin signaling pathway and BMI1 are jointly involved in cisplatin-induced cell injury. Low lithium chloride (LiCl) concentrations activated the Wnt/β-catenin pathway, increased BMI1 expression, and reduced cisplatin-induced hair cell injury. In contrast, overexpression of BMI1 inhibited the Wnt/β-catenin pathway and reduced hair cell injury. Meanwhile, the increased cisplatin-induced damage to hair cells by inhibiting BMI1 could not be rescued by LiCl. In conclusion, LiCl can ameliorate cisplatin ototoxicity by elevating BMI1 expression through activation of the Wnt/β-catenin pathway. Overexpression of BMI1 inhibits the Wnt/β-catenin pathway and reduces cisplatin-induced hair cell damage.
In vitro assessment of the role of endoplasmic reticulum stress in sunitinib-induced liver and kidney toxicity
Arzuk E and Armağan G
Sunitinib, a multi-targeted tyrosine kinase inhibitor, is prescribed for the treatment of metastatic gastrointestinal stromal tumors, advanced metastatic renal cell carcinoma, and pancreatic neuroendocrine tumors. Hepatotoxicity and nephrotoxicity are significant adverse effects of sunitinib administration; however, there is limited information regarding the molecular mechanisms of these adverse effects. The aim of the present study was to elucidate the role of endoplasmic reticulum stress in hepatotoxicity and nephrotoxicity induced by sunitinib. In addition to endoplasmic reticulum stress, oxidative stress and mitochondrial membrane potential were evaluated to investigate the molecular mechanism more comprehensively. Findings revealed that sunitinib exposure significantly increased the reactive oxygen species levels and decreased the Nrf2 gene expression and GSH/GSSG ratio, suggesting oxidative stress induction in normal hepatocyte (AML12) and normal kidney (HK-2) cell lines. Endoplasmic reticulum stress markers, including ATF4, CHOP, IRE1α, XBP1s and ATF6 mRNA expressions, were upregulated in AML12 cells. Furthermore, enhanced intracellular calcium levels also indicate endoplasmic reticulum stress in hepatocytes. In contrast, sunitinib exposure did not alter endoplasmic reticulum-related gene expression levels and intracellular calcium levels in HK-2 cells. In terms of mitochondrial membrane potential and caspase-3 activity, sunitinib induced mitochondrial membrane damage and increased caspase-3 activation not only in AML12 cells but also in HK-2 cells. The research findings indicate that sunitinib may induce cytotoxic effects in hepatocytes through mechanisms involving oxidative stress, endoplasmic reticulum stress, and mitochondrial damage. However, in the kidney, the toxicity mechanism is different from that of liver, and the endoplasmic reticulum stress does not seem to be involved in this mechanism.
High glucose enhances malignant progression of MDA-MB-231 cells through cumulative effect
Zhang G, Liu Z, Zheng H, Xu Y, Zhang D, Chen Q and Luo D
Previous investigations have shown that high glucose can promote breast cancer progression. However, the relationship between high glucose microenvironment and triple-negative breast cancer (TNBC) remains to be explored. In this study, we performed RNA-seq to explore the effect of short-term high glucose and long-term high glucose on MDA-MB-231 cell line. A total of 896 highly ranked differentially expressed genes (DEGs) were identified, including 57 DEGs of short-term high glucose group and 839 DEGs of long-term high glucose group. The DEGs of short-term high glucose group were mainly associated with IL-17 signaling pathway. Nonetheless, the DEGs of long-term high glucose group were primarily involved in IL-17 signaling pathway, MAPK signaling pathway, TNF signaling pathway, AGE-RAGE signaling pathway in diabetic complications, Toll-like receptor signaling pathway, and VEGF signaling pathway. Additionally, 8 hub genes of short-term high glucose group were enriched in metabolic pathway. Moreover, 10 hub genes of long-term high glucose group were enriched in ribosome pathway. Subsequently, in vitro experiment results found that high glucose can promote cell proliferation, and has a time accumulation effect. In addition, high glucose can induce the accumulation of inflammatory factors and promote angiogenesis. Collectively, these findings provide novel insights into the effect of diabetes mellitus type 2 (T2DM) on TNBC.
Toxicity risk from hip implant CoCrMo particles: The impact of dynamic flow rate on neuronal cells in microfluidic systems
Jeffers M, Kanniyappan H, Cheng KY, Prithweeraj S, Perumal G, Barba M, Lin Y and Mathew MT
In patients with total hip replacements (THRs), wear products in the form of nanoparticles and ions are released, especially around implant failure. In this study, we use N2a cells, a neuroblastoma cell line, to evaluate the effects of different flow rates on neuronal toxicity amidst exposure to CoCrMo particles. We hypothesized that increasing flow rates would increase N2a cell viability and decrease N2a cell-degradation products (DPs) toxicity. We conducted four 24-hour experiments, each with four flow rate conditions, 0, 50, 100, and 200 μL/min, based on the physiological shear stress of the vessels in the human body, to evaluate cell viability, cell morphology, and cell-DPs interaction. Steps included microfluidic channel preparation, N2a cell culturing, CoCrMo particle acquisition, microfluidic system assembly, and dynamic flow neurotoxicity evaluation, which included video microscopy, AlamarBlue, live/dead imaging, DAPI, and ROS assay. The results suggest that fewer neurotoxic reactions and greater viability at higher flow rates supported our hypothesis, although the full range of viable flow rates is yet to be studied. While cell-particle interaction is complex and dynamic, flow rate did modulate toxicity, viability, morphology, and growth environment. The microfluidic system should continue to be developed to study toxicology aspects of implants by simulating in vivo conditions more accurately.
Aristolochic acid I promotes renal tubulointerstitial fibrosis by up-regulating expression of indoleamine 2,3-dioxygenase-1 (IDO1)
Chen L, Cheng S, Ying J, Zhang Q, Wang C, Wu H, Wang Y, Zhang H, Wang J, Ye J and Zhang L
Aristolochic acid I (AAI) is strongly nephrotoxic and can cause "Aristolochic acid nephropathy (AAN)". Aristolochic acid nephropathy is characterized by extensive renal interstitial fibrosis. However, the exact mechanism by which it occurs has not been fully elucidated. lt has been reported that indoleamine 2,3-dioxygenase-1 (IDO1) promotes renal fibrosis in renal disorders, but it is unclear how IDO1 functions in AAI-induced kidney fibrosis. In this work, we systematically examined the role of IDO1 in AAI-induced renal tubulointerstitial fibrosis. The results showed that AAI induced upregulation of IDO1 expression in renal tubular epithelial cells and mouse kidney. Inhibition of IDO1 expression reduced the levels of fibrosis-associated markers α-SMA, COL-I and FN and ameliorated renal tubular epithelial cell fibrosis. It also improved renal function, reduced collagen deposition, and ameliorated interstitial fibrosis in mice. Moreover, we discovered that inhibition of IDO1 decreased the expression of the apoptotic protein BAX, raised the expression of BCL-2 protein, and reduced apoptosis. The above studies suggest that IDO1 is a target of action in renal tubulointerstitial fibrosis caused by AAI, and inhibition of IDO1 may be a viable approach for the therapy of AAI-induced renal tubulointerstitial fibrosis.
The development of rapid immunoassays for the urinary analysis of 1-hydroxypyrene glucuronide facilitate both laboratory and on-site polycyclic aromatic hydrocarbon biomonitoring
Ball L, Carter H, Baker C and Porter R
Polycylic Aromatic Hydrocarbons (PAHs) are produced during the incomplete burning of organic materials. PAH sources include vehicle exhaust, tobacco smoke and waste incineration. Environmental and occupational exposures to PAHs are known to occur. Cancer is a significant endpoint of PAH exposure and several occupations associated with high PAH exposure have been classified by IARC as carcinogenic to humans (Group 1). Pyrene is a common component of PAH mixtures and metabolism of pyrene leads to the excretion of 1-hydroxypyrene glucuronide (1-OHPyrG) in urine. Laboratory measurement of urinary 1-OHPyrG is employed in occupational and environmental biomonitoring programmes. The production of an anti-1-OHPyrG monoclonal antibody would allow the development of a PAH biomonitoring ELISA facilitating large scale laboratory screening and routine testing. The development of a lateral flow immunoassay and the production of a field test (point of use test) would greatly increase the value of biomonitoring. A novel Lateral Flow has been developed which employs an anti-1-OHPyrG sheep monoclonal antibody (Mab) to capture the PAH metabolite. The captured metabolite is visualised through a second Mab raised against the Mab-1-OHPyrG immune complex. This sandwich assay provides a positive correlation between the assay signal and biomarker concentration. A Smartphone camera allows signal measurement and a carefully considered 'app' provides result interpretation and data analysis. Results are provided in an exposed/not-exposed format. Performance of the lateral flow was confirmed through a comparative study and field trial. The development of a lateral flow test provides "real-time" analysis to occupational health professionals. On-site screening allows the immediate confirmation of safe working practice, provides immediate reassurance to those involved in potentially hazardous activities and greatly increases the efficacy of biomonitoring.
Development and validation of a multicompound LLE-LC-MS/MS method for biomonitoring of hazardous medicinal products in urine of exposed workers
Portilha-Cunha MF, Alves A, Ribeiro ARL, Silva AMT, Norton P and Santos MSF
Antineoplastic drugs are carcinogens, mutagens, or teratogenic substances, which can pose serious risks to professionals. Concerns about chronic exposure to these hazardous medicinal products (HMPs) have led to their prominence in the EU strategic framework on health and safety at work 2021-2027. To estimate and mitigate human exposure to HMPs, regular monitoring programs and, consequently, reliable, sensitive, multicomponent methods are crucial. In this study, an unconventional liquid-liquid extraction coupled with liquid chromatography-tandem mass spectrometry analysis is proposed to simultaneously identify and quantify seven HMPs of high concern in urine: cyclophosphamide, etoposide, ifosfamide, paclitaxel, megestrol, mycophenolate mofetil, and tamoxifen, the last three for the first time. Recoveries of all drugs from urine samples were close to 100%, and method detection limits (0.6-4.1ng/L) were noticeably lower than most previously reported. This novel, non-invasive method for biomonitoring is thus suitable to unequivocally identify the target drugs at the expected trace levels in urine and to infer about workers' exposure. The method contributes to the conception of regular monitoring programs for antineoplastic drugs, in line with recommendations under EU Directive 2004/37/EC. This is especially relevant in Portugal, where neither analytical methods nor exposure data exist due to lack of formal surveillance.
Generation and application of CES1-knockout Tet-Off-regulated CYP3A4 and UGT1A1-expressing Caco-2 cells
Murata M, Okada K, Takahashi M, Ueyama-Toba Y, Ito S and Mizuguchi H
Caco-2 cells, a human colorectal adenocarcinoma cell line, are widely used to model small intestinal epithelial cells in the drug development process because they can predict drug absorption with high accuracy. However, Caco-2 cells have several issues. First, Caco-2 cells have little expression of cytochrome P450 3A4 (CYP3A4), which is a major drug-metabolizing enzyme in the human intestine. We previously developed Caco-2 cells whose expression of CYP3A4 can be controlled using doxycycline (Dox) (CYP3A4-Caco-2 cells) (Ichikawa et al., Sci. Rep, 2021). However, since the Tet-On system was used to regulate CYP3A4 expression in these cells, there was concern about drug-drug interactions. The second issue is that in the human small intestine, carboxylesterase 2 (CES2) is more highly expressed than carboxylesterase 1 (CES1), while in Caco-2 cells CES1 is more highly expressed. The third issue is the low level expression of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), a phase II drug-metabolizing enzyme. In this study, we used genome-editing technology to establish CES1-knockout Caco-2 cells whose CYP3A4 and UGT1A1 expression can be regulated by the Tet-Off system. These cell lines would be useful in pharmaceutical researches, including intestinal toxicological studies, as an in vitro model for orally administered drugs.
Time-course characterization of whole-transcriptome dynamics of HepG2/C3A spheroids and its toxicological implications
Kim C, Zhu Z, Barbazuk WB, Bacher RL and Vulpe CD
Physiologically relevant in vitro models are a priority in predictive toxicology to replace and/or reduce animal experiments. The compromised toxicant metabolism of many immortalized human liver cell lines grown as monolayers as compared to in vivo metabolism limits their physiological relevance. However, recent efforts to culture liver cells in a 3D environment, such as spheroids, to better mimic the in vivo conditions, may enhance the toxicant metabolism of human liver cell lines. In this study, we characterized the dynamic changes in the transcriptome of HepG2/C3A hepatocarcinoma cell spheroids maintained in a clinostat system (CelVivo) to gain insight into the metabolic capacity of this model as a function of spheroid size and culture time. We assessed morphological changes (size, necrotic core), cell health, and proliferation rate from initial spheroid seeding to 35 days of continuous culture in conjunction with a time-course (0, 3, 7, 10, 14, 21, 28 days) of the transcriptome (TempO-Seq, BioSpyder). The phenotypic characteristics of HepG2/C3A growing in spheroids were comparable to monolayer growth until ∼Day 12 (Day 10-14) when a significant decrease in cell doubling rate was noted which was concurrent with down-regulation of cell proliferation and cell cycle pathways over this time period. Principal component analysis of the transcriptome data suggests that the Day 3, 7, and 10 spheroids are pronouncedly different from the Day 14, 21, and 28 spheroids in support of a biological transition time point during the long-term 3D spheroid cultures. The expression of genes encoding cellular components involved in toxicant metabolism and transport rapidly increased during the early time points of spheroids to peak at Day 7 or Day 10 as compared to monolayer cultures with a gradual decrease in expression with further culture, suggesting the most metabolically responsive time window for exposure studies. Overall, we provide baseline information on the cellular and molecular characterization, with a particular focus on toxicant metabolic capacity dynamics and cell growth, of HepG2/C3A 3D spheroid cultures over time.
Benzo[b]fluoranthene damages coronary artery and affects atherosclerosis markers in mice and umbilical vein endothelial cells
Luo H, Zhao S, Zi J, Hu Y, Yao Y and Xiong J
Polycyclic aromatic hydrocarbons (PAHs) exposure is associated with cardiovascular diseases. Toxic effects of PAHs are diverse, while cardiovascular consequences of benzo[b]fluoranthene (B[b]F) are unclear. Here, we reported the impacts of B[b]F on coronary artery and atherosclerosis markers both in mice and umbilical vein endothelial EAhy.926 cells. In mice, we found that B[b]F decreases heart-to-body weight ratio, affects aortic physiology, elevates serum low-density lipoprotein and total cholesterol, increases aortic levels of collagen fiber and atherosclerotic marker vascular cell adhesion molecule-1 (VCAM-1), and downregulates oxidative stress related nuclear factor erythroid 2-related factor 2 (Nrf2). In EAhy.926 cells, we showed that B[b]F inhibits cell proliferation and migration in a dose-dependent manner, induces cell cycle arrest and apoptosis, increases reactive oxygen species, upregulates VCAM-1 level, and suppresses expression of Nrf2. Taken together, our findings reveal that B[b]F exposure may contribute to coronary artery damage and potentially induce atherosclerosis, possibly via the Nrf2-related signaling pathways.
Examination of the anabolic activity and mechanisms of action of the combination of Diosgenin and Ecdysterone in C2C12 myotubes
Kostov T, Diel P and Isenmann E
Plant steroids such as ecdysterone (ECDY) or diosgenin (DIO) have been associated with anabolic and performance-enhancing effects for years. However, the molecular mechanisms have not yet been extensively studied in skeletal muscle cells. Consequently, the anabolic activity and associated molecular mechanisms of ECDY and DIO alone and in combination were investigated in C2C12 myotubes. Dose-dependent effects of both compounds on myotube diameter, mRNA expression of IGF-1 and PI3KR1 as well as expression of myosin heavy chain (MHC) proteins were analyzed in differentiated C2C12 cells. In addition, the binding affinities to androgen and estrogen receptors were analyzed. Treatment with ECDY and DIO significantly induced hypertrophy of C2C12 myotubes. Partially additive effects were observed. This is supported by the mRNA expression of IGF-1 and PI3KR1 as well as in the expression of MHC. However, no clear statement can be made regarding which combination has the strongest additive effects. Besides the results suggest that, in contrast to ECDY, DIO has antiandrogenic effects and bind on AR. Consequently, it indicate that two different mechanisms of action are activated in ECDY and DIO combinations. However, this must be confirmed in further cell cultures studies and human interventions concerning anti-doping regulations.
Are the postmortem concentration changes of the synthetic cannabinoid cumyl-5F-P7AICA and its N-pentanoic acid metabolite dependent on the environmental conditions? - A systematic study following pulmonary administration to pigs
Walle N, Doerr AA, Peters B, Laschke MW, Menger MD, Schmidt PH, Meyer MR and Schaefer N
The number of fatal cases involving synthetic cannabinoids (SCs) is increasing. However, interpretation of postmortem (PM) toxicological findings is challenging, due to unknown PM intervals and possible redistribution processes or instabilities. Only sparse data on SCs are available. Therefore, a controlled pig study was performed to determine the PM stability of cumyl-5F-P7AICA under different environmental conditions. Ten pigs inhalatively received 200 µg/kg body weight cumyl-5F-P7AICA each. Six hours later, they were euthanized and biopsies of the main tissues and body fluids were taken. Animals were stored in air or water (n=5 each) and samples were repeatedly taken for three days. Quantification of cumyl-5F-P7AICA and its N-pentanoic acid metabolite (NPA) was performed using standard addition or a fully validated method (blood) followed by LC-MS/MS. Time-dependent concentration changes of cumyl-5F-P7AICA were observed in liver, bile fluid and muscle specimens at both conditions. Concentrations of NPA only changed considerably in duodenum content of animals stored in air. Environment-dependent concentrations changes were only observed for cumyl-5F-P7AICA in kidney and the NPA metabolite in duodenum content. Overall, cumyl-5F-P7AICA and its metabolite seem to be quite stable in PM specimens. Hence, also central blood might be analyzed, if no peripheral blood is available.
Combined developmental exposure to estrogenic endocrine disruptor and nutritional imbalance induces long term adult prostate inflammation through inflammasome activation
Gharieb K, Doumandji N, Bensalem W, Bellon RP, Inoubli L, Siddeek B, Traverse-Glehen A, Decaussin-Petrucci M, Trabucchi M, Benahmed M and Mauduit C
Increasing number of studies suggested that environmental deleterious impacts (such as estrogen-like endocrine disruptors, EDCs, unhealthy diet) during early human development affect the risk of developing non-communicable diseases including prostate cancer (PCa) later in life. To test if the combination of EDCs and unhealthy induces adult prostate lesions, we developed an experimental model of adult male Sprague Dawley rats exposed during gestation (from day 7) to weaning to high fat diet (HFD 60 % fat), or to a xenoestrogen (estradiol benzoate, EB, 2.5 µg/d) from post-natal days 1-5, or to a combination of both. EB and EB+HFD exposures induced decreased prostate weight in adult rats along with inflammatory status. A white blood cell infiltrate was observed after EB exposure and more dramatic lesions were observed with the combined exposure, along with a gland destruction. The lesions, following EB or EB+HFD exposure, are associated with elevated mRNA levels for TNFa, IL6 and CCL2/MCP1 pro-inflammatory cytokines while the levels of the anti-inflammatory IL10 cytokine remained unchanged. This activation of NLRP3 and elevated levels of CASP1 were observed following EB or EB+HFD exposures associated with elevated mRNA levels for IL1b, substrates for the NLRP3 complex. HFD exposure alone has mild if not pro-inflammatory effects in adult prostate. In conclusion, we showed that developmental combined exposure to EB and HFD programmed prostate inflammatory lesions in adult prostate. Since proliferative inflammatory atrophy and chronic inflammation of prostate may drive cell to become cancer cells, our model might be useful for study onset of PCa.
Neurotoxic and developmental effects of scented incense stick smoke: Network toxicology and zebrafish model study
Sudhakaran G, Ramamurthy K, Dhaareshwar VN, Rajagopal R, Alfarhan A and Arockiaraj J
Burning incense sticks is a traditional practice in many cultures, especially in Southeast Asia. While it is often regarded as sacred and beneficial, modern incense sticks contain various chemicals that can pose health risks. A GCMS analysis of the ICS revealed potential compounds. Network toxicology revealed that ICS contains compounds violating Lipinski's rule of five, leading to potential neurotoxic effects. Key pathways affected include neuroactive ligand-receptor interaction and calcium signaling, associated with neurodegenerative diseases like Parkinson's and Alzheimer's. Significant genes involved are STAT3, BCL2, and MTOR, emphasizing the chemical hazards of ICS exposure. We investigated the toxicity of ICS using zebrafish (Danio rerio) embryos as a mode. ICS exposure resulted in a dose-dependent increase in toxicity. High concentrations (7 and 14 µg/ml) led to immediate mortality, while lower concentrations (0.1, 0.3, 0.5, and 1 µg/ml) caused developmental defects such as yolk sac edema, skeletal malformations, and pericardial edema. Mortality rates increased with higher concentrations, confirming dose-dependent ICS exposure caused hypoactive locomotion, with reduced distance traveled and velocity toxicity. Higher concentrations of ICS led to increased ROS levels and cellular damage, as evidenced by enhanced staining levels. A dose-dependent increase in lipid peroxidation (DPPP assay) and lipid accumulation (Nile red assay) was observed. Higher ICS concentrations led to significant oxidative damage to lipids and increased lipid deposition. Enzymatic assays showed that ICS exposure significantly decreased the activities of antioxidant enzymes SOD and CAT, indicating impaired antioxidant defense, while increasing LDH activity, signaling tissue damage and cytotoxicity. Gene expression analysis revealed downregulation of SOD1 and CAT genes, upregulation of inflammatory genes TNF-α and IL-1β, and increased expression of the apoptotic gene p53 with decreased expression of Bcl-2 and BDNF. These findings highlight ICS's potential to cause oxidative stress, inflammation, apoptosis, and neurodevelopmental impairments.