Carbon Balance and Management

Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future
Dye AW, Houtman RM, Gao P, Anderegg WRL, Fettig CJ, Hicke JA, Kim JB, Still CJ, Young K and Riley KL
In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emissions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have finite lifespans, and disturbances such as wildfire, insect and disease outbreaks, and drought can hasten tree mortality or reduce tree growth, thereby slowing carbon sequestration, driving carbon emissions, and reducing forest carbon storage in stable pools, particularly the live and standing dead portions that are counted in many carbon offset programs. Many forests have natural disturbance regimes, but climate change and human activities disrupt the frequency and severity of disturbances in ways that are likely to have consequences for the long-term stability of forest carbon. To minimize negative effects and maximize resilience of forest carbon, disturbance risks must be accounted for in carbon offset protocols, carbon management practices, and carbon mapping and modeling techniques. This requires detailed mapping and modeling of the quantities and distribution of forest carbon across the United States and hopefully one day globally; the frequency, severity, and timing of disturbances; the mechanisms by which disturbances affect carbon storage; and how climate change may alter each of these elements. Several tools (e.g. fire spread models, imputed forest inventory models, and forest growth simulators) exist to address one or more of the aforementioned items and can help inform management strategies that reduce forest carbon risk, maintain long-term stability of forest carbon, and further explore challenges, uncertainties, and opportunities for evaluating the continued potential of, and threats to, forests as viable mechanisms for forest carbon storage, including carbon offsets. A growing collective body of research and technological improvements have advanced the science, but we highlight and discuss key limitations, uncertainties, and gaps that remain.
Stand structure and Brazilian pine as key determinants of carbon stock in a subtropical Atlantic forest
Cysneiros VC, Pelissari AL and Figueiredo Filho A
Understanding the drivers of variations in carbon stocks is essential for developing the effective management strategies that contribute to mitigating climate change. Although a positive relationship between biodiversity and the aboveground carbon (AGC) has been widely reported for various Brazilian forest types, representing a win-win scenario for climate change mitigation, this association has not been commonly found in Brazilian subtropical forests. Therefore, in the present study, we aimed to evaluate the effects of Araucaria angustifolia, stand structure and species diversity in shaping AGC stocks in Brazilian subtropical mixed forest. We hypothesized that the effects on the AGC of stand structure and diversity would be mediated by A. angustifolia. We also evaluated the expectation of higher carbon stocks in protected forest as a result of their positive correlation with biodiversity conservation.
Methane cycling in temperate forests
Wigley K, Armstrong C, Smaill SJ, Reid NM, Kiely L and Wakelin SA
Temperate forest soils are considered significant methane (CH) sinks, but other methane sources and sinks within these forests, such as trees, litter, deadwood, and the production of volatile organic compounds are not well understood. Improved understanding of all CH fluxes in temperate forests could help mitigate CH emissions from other sources and improve the accuracy of global greenhouse gas budgets. This review highlights the characteristics of temperate forests that influence CH flux and assesses the current understanding of the CH cycle in temperate forests, with a focus on those managed for specific purposes. Methane fluxes from trees, litter, deadwood, and soil, as well as the interaction of canopy-released volatile organic compounds on atmospheric methane chemistry are quantified, the processes involved and factors (biological, climatic, management) affecting the magnitude and variance of these fluxes are discussed. Temperate forests are unique in that they are extremely variable due to strong seasonality and significant human intervention. These features control CH flux and need to be considered in CH budgets. The literature confirmed that temperate planted forest soils are a significant CH sink, but tree stems are a small CH source. CH fluxes from foliage and deadwood vary, and litter fluxes are negligible. The production of volatile organic compounds could increase CH's lifetime in the atmosphere, but current in-forest measurements are insufficient to determine the magnitude of any effect. For all sources and sinks more research is required into the mechanisms and microbial community driving CH fluxes. The variability in CH fluxes within each component of the forest, is also not well understood and has led to overestimation of CH fluxes when scaling up measurements to a forest or global scale. A roadmap for sampling and scaling is required to ensure that all CH sinks and sources within temperate forests are accurately accounted for and able to be included in CH budgets and models to ensure accurate estimates of the contribution of temperate planted forests to the global CH cycle.
Influence of thinning on carbon storage mediated by soil physicochemical properties and microbial community composition in large Chinese fir timber plantation
Huang L and Zhou Y
Thinning practices are useful measures in forest management and play an essential role in maintaining ecological stability. However, the effects of thinning on the soil properties and microbial community in large Chinese fir timber plantations remain unknown. The purpose of this study was to investigate the changes in soil physicochemical properties and microbial community composition in topsoil (0-20 cm) under six different intensities (i.e., 300 (R300), 450 (R450), 600 (R600), 750 (R750) and 900 (R900) trees per hectare and 1650 (R1650) as a control) in a large Chinese fir timber plantation.
Exploring the role of canopy cover and environmental factors in shaping carbon storage in Desa'a forest, Ethiopia
Solomon N, Birhane E, Teklay M, Negussie A and Gidey T
Dry Afromontane forests play a vital role in mitigating climate change by sequestering and storing carbon, as well as reducing greenhouse gas emissions. Despite previous research highlighting the importance of carbon stocks in these ecosystems, the influence of canopy cover and environmental factors on carbon storage in dry Afromontane forests has been barely assessed. This study addresses this knowledge gap by investigating the effects of environmental factors and vegetation cover on carbon stocks in Desa'a forest, a unique and threatened Afromontane dry forest ecosystem in northern Ethiopia. Data on woody vegetation, dead litter, grass biomass, and soil samples were collected from 57 plots. A one-way analysis of variance (ANOVA) was performed at a 95% confidence level (α = 0.05) to examine the influence of canopy cover and environmental factors on the carbon stocks of various pools.
Improving soil carbon estimates of Philippine mangroves using localized organic matter to organic carbon equations
Salmo SG, Manalo SPB, Jacob PB, Gerona-Daga MEB, Naputo CFP, Maramag MWA, Basyuni M, Sidik F and MacKenzie R
Southeast Asian (SEA) mangroves are globally recognized as blue carbon hotspots. Methodologies that measure mangrove soil carbon stock (SCS) are either accurate but costly (i.e., elemental analyzers), or economical but less accurate (i.e., loss-on-ignition [LOI]). Most SEA countries estimate SCS by measuring soil organic matter (OM) through the LOI method then converting it into organic carbon (OC) using a conventional conversion equation (%C = 0.415 * % LOI + 2.89, R = 0.59, n = 78) developed from Palau mangroves. The local site conditions in Palau does not reflect the wide range of environmental settings and disturbances in the Philippines. Consequently, the conventional conversion equation possibly compounds the inaccuracies of converting OM to OC causing over- or under-estimated SCS. Here, we generated a localized OM-OC conversion equation and tested its accuracy in computing SCS against the conventional equation. The localized equation was generated by plotting % OC (from elemental analyzer) against the % OM (from LOI). The study was conducted in different mangrove stands (natural, restored, and mangrove-recolonized fishponds) in Oriental Mindoro and Sorsogon, Philippines from the West and North Philippine Sea biogeographic regions, respectively. The OM:OC ratios were also statistically tested based on (a) stand types, (b) among natural stands, and (c) across different ages of the restored and recolonized stands. Increasing the accuracy of OM-OC conversion equations will improve SCS estimates that will yield reasonable C emission reduction targets for the country's commitments on Nationally Determined Contributions (NDC) under the Paris Agreement.
Changes in the net primary production of ecosystems across Western Europe from 2015 to 2022 in response to historic drought events
Potter C and Pass S
Ecosystem models are valuable tools to make climate-related assessments of change when ground-based measurements of water and carbon fluxes are not adequately detailed to realistically capture geographic variability. The Carnegie-Ames-Stanford Approach (CASA) is one such model based on satellite observations of monthly vegetation cover to estimate net primary production (NPP) of terrestrial ecosystems.
Accounting for carbon emissions in social water cycle system in nine provinces along the yellow river and analysis of influencing factors
Cui L, Wang F, Zhang H, Zhao H and Shi J
Water resources is an essential factor to ensure the sustainable development of the society, but along with the utilization and treatment of water resources, a large amount of carbon emissions will be generated. The study of carbon emissions in social water cycle system is of great significance in promoting the achievement of carbon peaking and carbon neutrality. This study calculated the carbon emissions generated in social water cycle system in nine provinces along the Yellow River, used the Tapio decoupling model to analyze the decoupling relationship between water and carbon emissions, and constructed the STIRPAT expanded model to analyze the main influencing factors of carbon emissions.
Quantification of biomass availability for wood harvesting and storage in the continental United States with a carbon cycle model
Hausmann H, Cai Q and Zeng N
Wood Harvesting and Storage (WHS) is a form of Biomass Carbon Removal and Storage (BiCRS) that utilizes a combined natural and engineered process to harvest woody biomass and put it into long term storage, most frequently in the form of subterranean burial. This paper aims to quantify the availability of woody biomass for the purposes of WHS in the continental United States using a carbon cycle modeling approach. Using a regional version of the VEGAS terrestrial carbon cycle model at 10 km resolution, this paper calculates the annual woody net primary production in the continental United States. It then applies a series of constraints to exclude woody biomass that is unavailable for WHS. These constraints include fine woody biomass, current land use, current wood utilization, land conservation, and topographical limitations. These results were then split into state by state and regional totals.
Application of the wildland fire emissions inventory system to estimate fire emissions on forest lands of the United States
Smith JE, Billmire M, French NHF and Domke GM
Forests are significant terrestrial biomes for carbon storage, and annual carbon accumulation of forest biomass contributes offsets affecting net greenhouse gases in the atmosphere. The immediate loss of stored carbon through fire on forest lands reduces the annual offsets provided by forests. As such, the United States reporting includes annual estimates of direct fire emissions in conjunction with the overall forest stock and change estimates as a part of national greenhouse gas inventories within the United Nations Framework Convention on Climate Change. Forest fire emissions reported for the United States, such as the 129 Tg CO reported for 2022, are based on the Wildland Fire Emissions Inventory System (WFEIS). Current WFEIS estimates are included in the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2022 published in 2024 by the United States Environmental Protection Agency. Here, we describe WFEIS the fire emissions inventory system we used to address current information needs, and an analysis to confirm compatibility of carbon mass between estimated forest fire emissions and carbon in forest stocks.
Improving wood carbon fractions for multiscale forest carbon estimation
Doraisami M, Domke GM and Martin AR
Wood carbon fractions (CFs)-the proportion of dry woody biomass comprised of elemental carbon (C)-are a key component of forest C estimation protocols and studies. Traditionally, a wood CF of 50% has been assumed in forest C estimation protocols, but recent studies have specifically quantified differences in wood CFs across several different forest biomes and taxonomic divisions, negating the need for generic wood CF assumptions. The Intergovernmental Panel on Climate Change (IPCC), in its 2006 "Guidelines for National Greenhouse Gas Inventories", published its own multitiered system of protocols for estimating forest C stocks, which included wood CFs that (1) were based on the best available literature (at the time) and (2) represented a significant improvement over the generic 50% wood CF assumption. However, a considerable number of new studies on wood CFs have been published since 2006, providing more accurate, robust, and spatially- and taxonomically- specific wood CFs for use in forest C estimation.
Montane evergreen forest deforestation for banana plantations decreased soil organic carbon and total nitrogen stores to alarming levels
Magalhães TM, Cossa ERB, Nhanombe HE and Mugabe ADM
Forest conversion to agricultural land has been shown to deplete soil organic carbon (SOC) and soil total nitrogen (STN) stocks. However, research on how soil properties respond to forest conversion to shifting cultivation has produced conflicting results. The conflicting findings suggest that the agricultural system may influence the response of SOC and STN to forest conversion to agriculture, depending on the presence of vegetative cover throughout the year. Due to the unique characteristics of montane evergreen forests (MEF) and banana plantations (BP), SOC and STN response to MEF conversion to BP may differ from existing models. Nevertheless, research on how soil properties are affected by MEF conversion to BP is scarce globally. In order to fill this research gap, the goal of this study was to evaluate how much deforestation for BP affects SOC, STN, and soil quality by analysing these soil parameters in MEF and BP fields down to 1-m depth, using standard profile-based procedures. Contrary to the specified hypothesis that SOC and STN losses would be restricted to the upper 20-cm soil layer, SOC losses were extended to the 40-cm depth layer and STN losses to the 60-cm depth layer. The soils lost 18.56 Mg ha (37%) of SOC from the upper 20 cm and 33.15 Mg ha (37%) from the upper 40 cm, following MEF conversion to BP. In terms of STN, the upper 20, 40, and 60 cm lost 2.98 (43%), 6.62 (47%), and 8.30 Mg ha (44%), respectively. Following MEF conversion to BP, the SOC stratification ratio decreased by 49%, implying a decline in soil quality. Massive exportation of nutrients, reduced C inputs due to complete removal of the arboreal component and crop residues, the erodibility of the soils on the study area's steep hillslopes, and the potential for banana plantations to increase throughfall kinetic energy, and splash erosion through canopy dripping are thought to be the leading causes of SOC and STN losses. More research is needed to identify the extent to which each cause influences SOC and STN losses.
How to maximize the joint benefits of timber production and carbon sequestration for rural areas? A case study of larch plantations in northeast China
Dong L, Lin X, Bettinger P and Liu Z
Implementing large-scale carbon sink afforestation may contribute to carbon neutrality targets and increase the economic benefits of forests in rural areas. However, how to manage planted forests in China to maximize the joint benefits of timber production and carbon sequestration is still unclear. Therefore, the present study quantified the effects of different rotation lengths, thinning treatments, site quality (SCI), stand density (SDI), and management costs on the joint benefits of carbon sequestration and timber production based on a stand-level model system developed for larch plantations in northeast China.
The Greenhouse gas Observations of Biospheric and Local Emissions from the Upper sky (GOBLEU): a mission overview, instrument description, and results from the first flight
Suto H, Kuze A, Matsumoto A, Oda T, Mori S, Miyashita Y, Hoshino C, Shigetoh M, Kataoka F and Tsubakihara Y
The Greenhouse gas Observations of Biospheric and Local Emissions from the Upper sky (GOBLEU) is a new joint project by Japan Aerospace Exploration Agency (JAXA) and ANA HOLDING INC. (ANAHD), which operates ANA flights. GOBLEU aims to visualizes our climate mitigation effort progress in support of subnational climate mitigation by collecting greenhouse gas (GHG) data as well as relevant data for emissions (nitrous dioxide, NO) and removals (Solar-Induced Fluorescence, SIF) from regular passenger flights. We developed a luggage-sized instrument based on the space remote-sensing techniques that JAXA has developed for Japan's Greenhouse gas Observing SATellite (GOSAT). The instrument can be conveniently installed on a coach-class passenger seat without modifying the seat or the aircraft.
Correction to: Aboveground live tree carbon stock and change in forests of conterminous United States: influence of stand age
Hoover CM and Smith JE
Uncertainty in REDD+ carbon accounting: a survey of experts involved in REDD+ reporting
Butler BJ, Sass EM, Gamarra JGP, Campbell JL, Wayson C, Olguín M, Carrillo O and Yanai RD
Reducing Emissions from Deforestation and forest Degradation (REDD+) is a program established under the United Nations Framework Convention on Climate Change (UNFCCC) to reduce carbon emissions from forests in developing countries. REDD+ uses an incentive-based approach whereby participating countries are paid to reduce forest carbon loss and increase carbon storage. Country-level carbon accounting is challenging, and estimates of uncertainty in emission reductions are increasingly required in REDD+ reports. This requirement is hard to meet if countries lack the necessary resources, tools, and capabilities. Some REDD+ programs adjust their payments for the uncertainty reported, which presents a perverse incentive because uncertainties are larger if more sources of uncertainty are reported. We surveyed people involved in REDD+ reporting to assess current capacities and barriers to improving estimates of uncertainty.
Maximizing tree carbon in croplands and grazing lands while sustaining yields
Sprenkle-Hyppolite S, Griscom B, Griffey V, Munshi E and Chapman M
Integrating trees into agricultural landscapes can provide climate mitigation and improves soil fertility, biodiversity habitat, water quality, water flow, and human health, but these benefits must be achieved without reducing agriculture yields. Prior estimates of carbon dioxide (CO) removal potential from increasing tree cover in agriculture assumed a moderate level of woody biomass can be integrated without reducing agricultural production. Instead, we used a Delphi expert elicitation to estimate maximum tree covers for 53 regional cropping and grazing system categories while safeguarding agricultural yields. Comparing these values to baselines and applying spatially explicit tree carbon accumulation rates, we develop global maps of the additional CO removal potential of Tree Cover in Agriculture. We present here the first global spatially explicit datasets calibrated to regional grazing and croplands, estimating opportunities to increase tree cover without reducing yields, therefore avoiding a major cost barrier to restoration: the opportunity cost of CO removal at the expense of agriculture yields.
Greenhouse gas fluxes of different land uses in mangrove ecosystem of East Kalimantan, Indonesia
Arifanti VB, Candra RA, Putra CAS, Asyhari A, Gangga A, Ritonga RP, Ilman M, Anggoro AW and Novita N
Mangrove ecosystems exhibit significant carbon storage and sequestration. Its capacity to store and sequester significant amounts of carbon makes this ecosystem very important for climate change mitigation. Indonesia, owing to the largest mangrove cover in the world, has approximately 3.14 PgC stored in the mangroves, or about 33% of all carbon stored in coastal ecosystems globally. Unfortunately, our comprehensive understanding of carbon flux is hampered by the incomplete repertoire of field measurement data, especially from mangrove ecosystem-rich regions such as Indonesia and Asia Pacific. This study fills the gap in greenhouse gases (GHGs) flux studies in mangrove ecosystems in Indonesia by quantifying the soil CO and CH fluxes for different land use types in mangrove ecosystems, i.e., secondary mangrove (SM), restored mangrove (RM), pond embankment (PE) and active aquaculture pond (AP). Environmental parameters such as soil pore salinity, soil pore water pH, soil temperature, air temperature, air humidity and rainfall are also measured.
Potential long-term, global effects of enhancing the domestic terrestrial carbon sink in the United States through no-till and cover cropping
Weber M, Wise M, Lamers P, Wang Y, Avery G, Morris KA and Edmonds J
Achieving a net zero greenhouse gas United States (US) economy is likely to require both deep sectoral mitigation and additional carbon dioxide removals to offset hard-to-abate emissions. Enhancing the terrestrial carbon sink, through practices such as the adoption of no-till and cover cropping agricultural management, could provide a portion of these required offsets. Changing domestic agricultural practices to optimize carbon content, however, might reduce or shift US agricultural commodity outputs and exports, with potential implications on respective global markets and land use patterns. Here, we use an integrated energy-economy-land-climate model to comprehensively assess the global land, trade, and emissions impacts of an adoption of domestic no-till farming and cover cropping practices based on carbon pricing.
Changes of soil carbon along precipitation gradients in three typical vegetation types in the Alxa desert region, China
Zhu X, Si J, Jia B, He X, Zhou D, Wang C, Qin J, Liu Z and Zhang L
The changes and influencing factors of soil inorganic carbon (SIC) and organic carbon (SOC) on precipitation gradients are crucial for predicting and evaluating carbon storage changes at the regional scale. However, people's understanding of the distribution characteristics of SOC and SIC reserves on regional precipitation gradients is insufficient, and the main environmental variables that affect SOC and SIC changes are also not well understood. Therefore, this study focuses on the Alxa region and selects five regions covered by three typical desert vegetation types, Zygophyllum xanthoxylon (ZX), Nitraria tangutorum (NT), and Reaumuria songarica (RS), along the climate transect where precipitation gradually increases. The study analyzes and discusses the variation characteristics of SOC and SIC under different vegetation and precipitation conditions. The results indicate that both SOC and SIC increase with the increase of precipitation, and the increase in SOC is greater with the increase of precipitation. The average SOC content in the 0-300cm profile is NT (4.13 g kg) > RS (3.61 g kg) > ZX (3.57 g kg); The average value of SIC content is: RS (5.78 g kg) > NT (5.11 g kg) > ZX (5.02 g kg). Overall, the multi-annual average precipitation (MAP) in the Alxa region is the most important environmental factor affecting SIC and SOC.
Correction to: The largest European forest carbon stocks are in the Dinaric Alps old-growth forests: comparison of direct measurements and standardised approaches
Bono A, Alberti G, Berretti R, Curovic M, Dukic V and Motta R