Vasopressinergic sexual dimorphism: Sex chromosome complement and organizational hormonal effects
This study aimed to analyze the role of the sex chromosomes (SCC: XX/XY) and the interaction with organizational hormonal effects on Avp gene expression at the supraoptic (SON) and paraventricular nuclei (PVN) due to water deprivation, as well as on the vasopressinergic sexually dimorphic antidiuretic and pressor responses. For this purpose, we used gonadectomized (GDX) transgenic mice of the "four core genotypes" model, in which the effect of gonadal sex and SCC are dissociated. A significant interaction between treatment and SCC on Avp gene expression at the SON was observed. Regardless of sex, XX mice showed higher basal expression than those with XY; however after water deprivation no changes in mRNA Avp expression were observed in the XX group, while an increase for XY was reported. At the PVN an interaction of SCC, organizational hormonal, and treatment factors was observed, revealing an increase in Avp gene expression in the XY-GDX male DEP group. Although no SCC or organizational hormonal effects were observed on the demopressin-antidiuretic response and renal Avpr2 mRNA expression, an interplay of organizational hormonal and SCC factors in short and medium-term vasopressin-blood pressure regulation were reported. XX-GDX females showed a facilitated vasopressin-bradycardic baroreflex response when compared to the other genotypes. Furthermore, although vasopressin continuous infusion resulted initially in the expected increase in the percentage change in MAP in all genotypes, in XX-GDX male and female this increase was sustained until the 30-min infusion, while in XY-GDX male and in XY-GDX female mice a decrease in MAP was observed.
High glucose elevates intracellular calcium level and induces ferroptosis in glomerular endothelial cells through the miR-223-3p/ITPR3 pathway
We investigated the link between ferroptosis and the miR-223-3p/inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) pathway in diabetic kidney disease (DKD). Blood samples from DKD patients and healthy controls were analysed for iron ions, calcium ions, and lipid peroxidation. High-glucose-induced glomerular endothelial cells were used to simulate DKD. MiR-223-3p overexpression or silencing was achieved using adenoviruses, affecting ferroptosis regulators (glutathione peroxidase 4 [GPX4], cystine/glutamate transporter (xCT), and long-chain acyl-CoA synthetase 4 [ACSL4]) and ITPR3. DKD patients showed elevated levels of iron ions, calcium ions, and lipid peroxidation. High glucose downregulated miR-223-3p, reducing xCT and GPX4 expression and increasing ACSL4 expression. MiR-223-3p was confirmed to target ITPR3 through luciferase reporter assay. MiR-223-3p overexpression reversed high-glucose-induced effects on ferroptosis markers and ITPR3 expression. In summary, high glucose levels decreased miR-223-3p expression, leading to increased calcium ion levels and ferroptosis, potentially through ITPR3 modulation. These findings provide insights into the mechanisms underlying DKD and its potential therapeutic targets.
Female C57BL/6 mice exhibit protection against nonalcoholic fatty liver disease and diabesity accompanied by differential regulation of hepatic lipocalin prostaglandin D synthase
PRDM16 in thermogenic adipocytes mediates an inter-organ protective signaling against alcohol-associated liver disease
Alcohol-associated liver disease (ALD) is one of the major chronic liver diseases and despite the dire clinical needs and extensive research efforts, no effective therapies are available for late-stages of ALD except for liver transplantation. Adipose tissue dysfunction has been implicated in the progression of ALD. Furthermore, it has been previously suggested that thermogenic fat can be activated after alcohol consumption. In this study, increased thermogenic gene expression was detected in both classical brown adipose tissue and beige adipocytes in mice that were given alcohol challenges even when housed at thermoneutrality. In particular, higher expression level of Prdm16, the key transcriptional co-component for beige fat function, was observed in the subcutaneous fat of mice after alcohol challenges. The objective of the present study is to explore the functional significance of adipocyte PRDM16 in the context of ALD. Even though Prdm16 adipocyte-specific-deleted mice (Prdm16-adKO) did not show liver defects at the basal level, following two different alcohol challenge regimens, exacerbated ALD phenotypes were observed in Prdm16-adKO mice compared to that of the control Prdm16 mice. Mechanistic investigation suggests that adipose dysfunction after alcohol abuse, including alcohol-induced changes in adipose lipolytic activity, fatty acid oxidation and adipokine levels, may render the worsened ALD phenotype in Prdm16-adKO mice. These results indicate PRDM16-mediated signaling in fat plays a protective role against liver injury caused by alcohol abuse, suggesting it may represent a potential therapeutic target against ALD.
ACSL5 promotes lipid deposition and lipoapoptosis in proximal tubular epithelial cells of diabetic kidney disease
Lipoapoptosis in Proximal tubular epithelial cells (PTCs) are substantial in the etiology of diabetic kidney disease (DKD), yet the underlying mechanisms warrant further investigation. Acyl-CoA synthetase long-chain family member 5 (ACSL5) facilitates the formation of acyl-CoA, however, the precise role of ACSL5 in lipoapoptosis of PTCs in DKD remains inconclusive.
Transforming growth factor β-2 is rhythmically expressed in both WT and BMAL1-deficient hypothalamic neurons and regulates neuropeptide Y: Disruption by palmitate
The hypothalamus contains neuropeptide Y (NPY)-expressing neurons that control food intake and regulate energy homeostasis. During the development of obesity, neuroinflammation occurs in the hypothalamus before peripheral tissues, but the cytokines involved have not been thoroughly studied. Among them is the transforming growth factor beta (TGF-β) family of cytokines. Herein, we demonstrate that Tgfb 1-3, as well as its receptors Tgfbr1 and Tgfbr2, exhibit high levels of expression in the whole hypothalamus, primary hypothalamic culture, and immortalized hypothalamic neurons. Of interest, only Tgfb2 mRNA displays circadian expression in the immortalized hypothalamic neurons and maintains this rhythmicity in BMAL1-KO-derived hypothalamic neurons that are deficient of inherent clock gene rhythmicity. Although BMAL2 may serve as an alternative rhythm generation mechanism in the absence of BMAL1, its knockdown did not affect Tgfb2 expression. Treatment of immortalized NPY-expressing neurons with TGF-β2 upregulates the core circadian oscillators Bmal1 and Nr1d1, and importantly, also Npy mRNA expression. With obesity, the hypothalamus is exposed to elevated levels of palmitate, a saturated fatty acid that promotes neuroinflammation by upregulating pro-inflammatory cytokines. Palmitate treatment disrupts the expression of TGF-β signaling components, increases BMAL1 binding to the Tgfb2 5' regulatory region, and upregulates Npy mRNA, whereas antagonizing TGFBRI attenuates the upregulation of Npy. These results suggest that hypothalamic neuronal TGF-β2 lies at the intersection of circadian rhythms, feeding neuropeptide control, and neuroinflammation. A better understanding of the underlying mechanisms that link nutrient excess to hypothalamic dysfunction is critical for the development of effective prevention and treatment strategies.
Rapid downregulation of DICER is a hallmark of adipose tissue upon high-fat diet feeding
Adipose tissue regulates whole-body energy balance and is crucial for metabolic health. With energy surplus, adipose tissue expands, which may lead to local areas of hypoxia and inflammation, and consequently impair whole-body insulin sensitivity. We report that DICER, a key enzyme for miRNA maturation, is significantly lower in abdominal subcutaneous white adipose tissue of men with obesity compared with men with a lean phenotype. Furthermore, DICER is profoundly downregulated in mouse adipose tissue and liver within the first week on a high-fat diet (HFD), and remains low after prolonged HFD feeding. Downregulation of DICER in mice occurs in both mature adipocytes and stromal vascular cells. Mechanistically, chemically induced hypoxia in vitro shows DICER degradation via interaction with hypoxia-inducible factor 1-α (HIF1α). Moreover, DICER and HIF1α interact in brown adipose tissue post-HFD which may signal for DICER degradation. Finally, RNA sequencing reveals a striking time-dependent downregulation of total miRNA content in mouse subcutaneous adipose tissue after HFD feeding. Collectively, HFD in mice reduces adipose tissue DICER, likely due to hypoxia-induced interaction with HIF1α during tissue expansion, and this significantly impacts miRNA content.
PTH-dependent stabilization of RANKL mRNA is associated with increased phosphorylation of the KH-type splicing regulatory protein
Parathyroid hormone (PTH) receptor agonists promote bone formation but also increase osteoclastogenesis, in part by increasing expression of the receptor activator of nuclear factor kappa-Β ligand (RANKL). In addition to activation of transcription, regulation of mRNA stability is another important molecular mechanism controlling mRNA abundance. PTH treatment for 6 h resulted in a 7.4-fold elevation in RANKL mRNA expression in UAMS-32P cells, despite prior inhibition of cellular transcription by thiophosphoryl (TPL). RANKL mRNA, like other TNF family members, contains AU-Rich Elements (AREs) in the 3' UTR. AU-Rich Element Binding Proteins (ABPs including KSRP, TTP, AUF1 and HuR) bind to AREs and regulate mRNA stability. There was significantly more KSRP bound to RANKL mRNA than any of the other ABPs. PTH did not increase the amount of ABPs bound to the RANKL transcript. However, the level of cellular phosphorylated KSRP was significantly increased in UAMS-32P cells pre-treated with TPL followed by PTH exposure, compared to cells treated with vehicle following TPL. The extent of phosphorylation of cellular AUF1, HuR, and TTP did not increase with PTH treatment. There were no significant changes in the cellular content of total Pin1 and phospho-Pin1 protein with PTH treatment. We conclude that increases in cellular phospho-KSRP following PTH treatment, together with fact that the total amount of the KSRP bound to the RANKL mRNA did not change with PTH-treatment, may indicate that phospho-KSRP plays some role in stabilizing the RANKL transcript.
Resveratrol attenuates Cr(VI)-induced disorders of glycolipid metabolism by regulating HNF1b/GPX1 in mice
Epidemiological studies have indicated that exposure to hexavalent chromium (Cr(VI)) is associated with increased morbidity in the population. Resveratrol (Res) is a polyphenolic compound known for its role in mitigating oxidative stress and inflammation. In this study, we investigated the effects of resveratrol on Cr(VI)-induced disorders of glycolipid metabolism and elucidated its mechanisms. Male C57BL/6 mice were exposed to resveratrol and Cr(VI) for 45 days. Cr(VI) exposure led to elevated blood glucose levels, impaired glucose tolerance and insulin resistance, oxidative and inflammatory responses, and alterations in glycolipid metabolism molecules such as PCK1 and SREBP1, along with inhibition of HNF1b and GPX1. Resveratrol pretreatment increased the expression of HNF1b and GPX1, reduced oxidative and inflammatory responses, and ultimately ameliorated Cr(VI)-induced glycolipid metabolism disorders. These findings suggest potential new targets for the prevention and treatment of dysglycolipidosis.
Corrigendum to "The adipose tissue melanocortin 3 receptor is targeted by ghrelin and leptin and may be a therapeutic target in obesity" [Mol. Cell. Endocrinol. 594 (2024), 112367]
Estrogen-mediated inhibition of purine metabolism and cell cycle arrest as a novel therapeutic approach in colorectal cancer
Purine metabolism is upregulated in various cancers including colorectal cancer (CRC). While previous work has elucidated the role of estrogen (E2) in metabolic reprogramming and ATP production, the effect of E2 on purine metabolism remains largely unknown. Herein, the impact of E2 signalling on purine metabolism in CRC cells was investigated using metabolome and transcriptome profiling of cell extracts derived from E2-treated HCT-116 cells with intact or silenced estrogen receptor alpha (ERα). Purine metabolic pathway enrichment analysis showed that 27 genes in the de novo purine synthesis pathway were downregulated in E2-treated CRC cells. Downstream consequences of E2 treatment including the induction of DNA damage, cell cycle arrest, and apoptosis were all shown to be ERα-dependent. These findings demonstrate, for the first time, that E2 exerts a significant anti-growth and survival effect in CRC cells by targeting the purine synthesis pathway in a ERα-dependent manner, meriting further investigation of the therapeutic utility of E2 signalling in CRC.
Insights into the effects of sex and tissue location on the evolution of adipocyte dysfunction in an ovine model of polycystic ovary syndrome (PCOS)
Adipose tissue dysfunction is one of the features of Polycystic Ovary Syndrome (PCOS) with dysregulated adipogenesis, altered functional pathways and increased inflammation. It is increasingly clear that there are also male correlates of the hormonal and metabolic features of PCOS. We hypothesised that the effects of adipose tissue dysfunction are not sex-specific but rather fat depot-specific and independent of obesity. We used a clinically realistic ovine model of PCOS where pregnant sheep are injected with 100 mg of testosterone propionate twice weekly from day 62 to day 102 of gestation. We studied control and prenatally androgenised (PA) female and male offspring during adolescence and weight-matched control and PA female sheep during adulthood. We examined subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT) and in adult female sheep bone marrow adipose tissue (BMAT). Adipogenesis related gene expression in SAT was similar in adolescent female and male controls and the reduction in adipogenesis related gene expression by PA in female adipose tissue was not observed in males. Differences in expression of genes associated with adipose tissue function in adolescence in SAT driven by PA were found in both sexes. In adulthood, the changes seen in adolescent females were absent or reversed but there was an increase in inflammatory markers that was weight independent. In addition, BMAT showed increased inflammatory markers. Adipose dysfunction evolves with time and is focussed on SAT rather than VAT and is generally sex-specific although there are also effects of prenatal androgenisation on male SAT. In female adults, the inflammation seen in SAT is also present in BMAT and the development of blood cells in an inflammatory environment may have systemic implications.
Macrophage NLRP3 inflammasome mediates the effects of sympathetic nerve on cardiac remodeling in obese rats
Obesity-associated cardiac remodeling is characterized by cardiac sympathetic nerve over-activation and pro-inflammatory macrophage infiltration. We identified norepinephrine (NE), a sympathetic neurotransmitter, as a pro-inflammatory effector to activate macrophage NLRP3 inflammasome, which contributed to cardiac inflammation. In vivo, Sprague-Dawley (SD) rats were fed a high-fat diet (HFD) for 12 weeks to establish obese rat models. Obese rats exhibited marked cardiac hypertrophy compared to the normal rats. The expression of NLRP3 and interleukin (IL)-1β was upregulated, accompanied by CD68NLRP3 macrophages infiltration in hearts of the obese rats. The obese rats also showed increased sympathetic nerve activity. β-adrenergic receptor (AR) inhibition mitigated these changes. In vitro, sympathetic neurotransmitter NE significantly exacerbated palmitic acid (PA)-induced macrophage polarization toward pro-inflammatory type and NLRP3 inflammasome activation in THP-1 macrophages. It was further found that the pro-inflammatory role of NE is dependent on the activation of protein kinase A (PKA) and subsequently inhibition of β-arrestin2, which is an important regulator of nuclear factor-kappa B (NF-κB) pathway. This study identifies the neuro-immune axis as an important mediator in obesity-associated cardiac remodeling. Targeting the neuro-immune system may open therapeutic opportunities for the treatment of cardiac remodeling in obesity.
NLRP3 inhibitor alleviates glycemic variability-induced cognitive impairment in aged rats with type 2 diabetes mellitus
Glycemic variability (GV) markedly exacerbates cognitive impairment in elderly patients with type 2 diabetes mellitus (T2DM), in part through chronic inflammation. This study investigated the therapeutic efficacy of the NLRP3 inflammasome inhibitor MCC950 in mitigating GV-induced cognitive impairment in an aged rat model of T2DM. Aged Sprague-Dawley rats with induced T2DM were subjected to GV conditions, and the effects of MCC950 were evaluated through measurement of body weight, blood glucose, lipid profiles, insulin level, inflammatory markers, and cognitive function. Transcriptomic analysis was performed on the hippocampus and prefrontal cortex. Treatment with MCC950 significantly alleviated weight loss and hyperglycemia in the GV group compared with the control group. MCC950 also reduced the levels of cholesterol, triglycerides, and pro-inflammatory markers (interleukin-1β (IL-1β) and interleukin-18 (IL-18)). Most notably, MCC950 improved spatial learning and memory retention in the GV group. Immunohistochemical analysis indicated a reduction in inflammasome activation and an increase in the expression level of the neuronal marker NeuN in the hippocampus. Transcriptomic analysis revealed that MCC950 altered neuroactive ligand-receptor interaction pathways in the hippocampus and influenced receptor binding and cell adhesion processes in the prefrontal cortex. These findings validated the efficacy of NLRP3 inhibitor in mitigating GV-induced cognitive impairment in elderly rats with T2DM and provided the basis for subsequent clinical studies exploring the broader potential of NLRP3-targeted interventions in addressing diabetes-associated cognitive impairment.
Puerarin reduces diabetic nephropathy-induced podocyte pyroptosis by modulating the SIRT1/NLRP3/caspase-1 pathway
Chronic kidney inflammation and podocyte injury are key pathological features of Diabetic Nephropathy (DN). Puerarin has been shown to inhibit podocyte pyroptosis and provide renal protection, although its molecular mechanism remains unclear.
Molecular basis of photoinduced seasonal energy rheostasis in Japanese Quail (Coturnix japonica)
Seasonal rhythms in photoperiod are a predictive cue used by many temperate-zone animals to time cycles of lipid accumulation. The neuroendocrine regulation of seasonal energy homeostasis and rheostasis are widely studied. However, the molecular pathways underlying tissue-specific adaptations remain poorly described. We conducted two experiments to examine long-term rheostatic changes in energy stability using the well-characterized photoperiodic response of the Japanese quail. In experiment 1, we exposed quails to photoperiodic transitions simulating the annual photic cycle and examined the morphology and fat deposition in liver, muscle, and adipose tissue. To identify changes in gene expression and molecular pathways during the vernal transition in lipid accumulation, we conducted transcriptomic analyses of adipose and liver tissues. Experiment 2 assessed whether the changes observed in Experiment 1 reflected constitutive levels or were due to time-of-day sampling. We identified increased expression of transcripts involved in adipocyte growth, such as Cysteine Rich Angiogenic Inducer 61 and Very Low-Density Lipoprotein Receptor, and in obesity-linked disease resistance, such as Insulin-Like Growth Factor Binding Protein 2 and Apolipoprotein D, in anticipation of body mass gain. Under long photoperiods, hepatic transcripts involved in fatty acid (FA) synthesis (FA Synthase, FA Desaturase 2) were down-regulated. Parallel upregulation of hepatic FA Translocase and Pyruvate Dehydrogenase Kinase 4 expression suggests increased FA uptake and inhibition of the pyruvate dehydrogenase complex. Our findings demonstrate tissue-specific biochemical and molecular changes that drive photoperiod-induced adipogenesis. These findings can be used to determine conserved pathways that enable animals to accumulate fat without developing metabolic diseases.
FSH INCREASES LIPID DROPLET CONTENT BY REGULATING THE EXPRESSION OF GENES RELATED TO LIPID STORAGE IN RAT SERTOLI CELLS
Sertoli cells (SCs) are essential for appropriate spermatogenesis. From a metabolic standpoint, they catabolize glucose and provide germ cells with lactate, which is their main energy source. SCs also oxidize fatty acids (FAs), which are stored as triacylglycerides (TAGs) within lipid droplets (LDs), to fulfill their own energy requirements. On the other hand, it has been demonstrated that FSH regulates some of SCs functions, but little is known about its effect on lipid metabolism. In the present study, we aimed to analyze FSH-mediated regulation of (1) lipid storage in LDs and (2) the expression of genes involved in FAs activation and TAG synthesis and storage in SCs. SCs obtained from 20-day-old rats were cultured for different incubation periods with FSH (100 ng/ml). It was observed that FSH increased LD content and TAG levels in SCs. There were also increments in the expression of Plin1, Fabp5, Acsl1, Acsl4, Gpat3, and Dgat1, which suggests that these proteins may mediate the increase in TAGs and LDs elicited by FSH. Regarding the signaling involved in FSH actions, it was observed that dbcAMP increased LD, and H89, a PKA inhibitor, inhibited FSH stimulus. Also, dbcAMP increased Plin2, Fabp5, Acsl1, Acsl4, and Dgat1 mRNA levels, confirming a role of the cAMP/PKA pathway in the regulation of lipid storage in SCs. Altogether, these results suggest that FSH, via the cAMP/PKA pathway, regulates lipid storage in SCs ensuring the availability of substrates to satisfy their energy requirements.
HSF1/HSP25 system protects mitochondria function from heat stress and assists steroidogenesis in MA-10 Leydig cells
Heat shock response is characterized by the induction of heat shock proteins (HSPs) or molecular chaperones that maintain protein homeostasis. Heat shock transcription factor 1 (HSF1) plays a central role in heat shock response in mammalian cells. To investigate the impact of the heat shock response mechanism on steroidogenesis, we generated MA-10 mouse Leydig tumor cells deficient in HSF1 using CRISPR-Cas9 genome editing. Under heat stress conditions, the levels of StAR protein, but not its mRNA, decreased more in HSF1-knockout cells than in wild-type cells, confirming that HSF1 stabilizes StAR protein. Simultaneously, HSP110, HSP70, and HSP25 were markedly upregulated in a manner dependent on HSF1. Mitochondrial membrane potential (MMP) and ATP synthesis were decreased in HSF1-knockout cells under heat stress conditions, and mitochondrial fragmentation was enhanced. Furthermore, treatment with carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a disruptor of MMP, reduced the levels of StAR protein to a greater extent in HSF1-knockout cells than in wild-type cells, which was associated with decreased MMP and ATP synthesis. Unexpectedly, HSP25 expression was markedly increased in wild-type cells following CCCP treatment. HSP25 knockdown reduces MMP under heat stress conditions and decreases StAR protein levels and progesterone synthesis. HSP25 overexpression in HSF1KO cells restored StAR protein levels. These results show that the HSF1/HSP25 pathway protects mitochondrial function and maintains StAR synthesis.
Selenoprotein M protects cardiac endothelial cell integrity against high-glucose stress via enhancing Parkin-mediated mitophagy
Selenoprotein M (SELENOM) has emerged as a crucial factor in maintaining cellular redox homeostasis and mitigating oxidative damage. This study aims to investigate its protective role in cardiac endothelial cells under hyperglycemic stress, a condition commonly associated with diabetes mellitus and its cardiovascular complications. Diabetic mice model and human umbilical vein endothelial cells (HUVECs) were applied for in vivo and in vitro studies. Results reveal that hyperglycemia significantly downregulates SELENOM expression in both diabetic mouse hearts and primary cultured cardiac endothelial cells. Overexpression of SELENOM in HUVECs mitigated high-glucose-induced FITC-Dextran diffusion and the loss of transendothelial electrical resistance. Additionally, SELENOM overexpression decreased reactive oxygen species (ROS) levels, preserved tight junction protein expression, and maintained cellular structural integrity under hyperglycemic conditions. Furthermore, SELENOM overexpression attenuated high-glucose-induced mitochondrial apoptosis. High-glucose conditions decreased Parkin and increased p62 and Beclin1 expressions. SELENOM overexpression restored Parkin levels and promoted co-localization of LAMP1 and TOMM20. Knockdown of Parkin significantly attenuated these protective effects, suggesting the importance of Parkin in Selenoprotein M-mediated mitophagy. Collectively, these findings suggest that Selenoprotein M enhances Parkin-mediated mitophagy to protect endothelial cells from hyperglycemic stress, offering potential therapeutic insights for diabetic cardiovascular complications.
Status of sperm mitochondrial functions and DNA methylation in infertile men with clinical varicocele before and after treatment
Varicocele has been associated with reduced male fertility potential. Treatment modalities for varicocele improve semen parameters, yet more than 50% of cases remain infertile. Varicocele-induced heat and hypoxia stress may affect sperm mitochondrial functions, possibly leading to aberrant epigenetic modifications. This study includes 30 fertile men and 40 infertile men with clinical varicocele. The effect of varicocele treatment (antioxidant supplementation and or varicocelectomy) was evaluated after 3 months of treatment. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (iROS) were measured by flow cytometry using JC-1 and DCFDA, respectively. mtDNA copy number and deletions were determined by PCR. DNA methylation was analysed by pyrosequencing. Present investigations suggest that infertile men with varicocele have abnormal semen parameters; significantly low MMP, high iROS, and high mtDNA copy number. Semen parameters were improved in a subset of men of both the treatment modalities; however, it was noted that varicocelectomy helped better in improving sperm parameters compared to antioxidant treatment. Both treatment modalities helped in reducing iROS and mtDNA copy number significantly; however, they were noneffective in improving MMP. Altered DNA methylation at mitochondria D loop and mitochondrial structure and function genes UQCRC2, MIC60, TOM22, and LETM1 (promoter region) were observed in varicocele group. The DNA methylation levels were restored after varicocele treatment; however, the restoration was not consistent at all CpG sites. Both the treatment modalities helped in restoring the altered DNA methylation levels of mitochondrial genes but the restoration is nonhomogeneous across the studied CpG sites.
An optimized fractionation method reveals insulin-induced membrane surface localization of GLUT1 to increase glycolysis in LβT2 cells
Insulin is an important regulator of whole-body glucose homeostasis. In insulin sensitive tissues such as muscle and adipose, insulin induces the translocation of glucose transporter 4 (GLUT4) to the cell membrane, thereby increasing glucose uptake. However, insulin also signals in tissues that are not generally associated with glucose homeostasis. In the human reproductive endocrine axis, hyperinsulinemia suppresses the secretion of gonadotropins from gonadotrope cells of the anterior pituitary, thereby linking insulin dysregulation to suboptimal reproductive health. In the mouse, gonadotropes express the insulin receptor which has the canonical signaling response of IRS, AKT, and mTOR activation. However, the functional outcomes of insulin action on gonadotropes are unclear. Here, we demonstrate through use of an optimized cell fractionation protocol that insulin stimulation of the LβT2 gonadotropic cell line results in the unexpected translocation of GLUT1 to the plasma membrane. Using our high purity fractionation protocol, we further demonstrate that though Akt signaling in response to insulin is intact, insulin-induced translocation of GLUT1 occurs independently of Akt activation in LβT2 cells.