Oxygen Consumption in Filamentous Pellets of Aspergillus niger: Microelectrode Measurements and Modeling
Filamentous fungi cultivated as biopellets are well established in biotechnology industries. A distinctive feature of filamentous fungi is that hyphal growth and fungal morphology affect product titers and require tailored process conditions. Within the pellet, mass transfer, substrate consumption, and biomass formation are intricately linked to the local hyphal fraction and pellet size. This study combined oxygen concentration measurements with microelectrode profiling and three-dimensional X-ray microtomography measurements of the same fungal pellets for the first time. This allowed for the precise correlation of micromorphological information with local oxygen concentrations of two Aspergillus niger strains (hyperbranching and regular branching). The generated results showed that the identified oxygen-penetrated outer pellet regions exhibited a depth of 90-290 µm, strain-specific, with the active part percentage in the pellet ranging from 18% to 69%, without any difference between strains. Using a 1D continuum diffusion consumption model, the oxygen concentration in the pellets was computed depending on the local hyphal fraction. The best simulation results were achieved by individually estimating the oxygen-related biomass yield coefficient of the consumption term within each examined pellet, with an average estimated value of 1.95 (± 0.72) kg biomass per kg oxygen. The study lays the foundation for understanding oxygen supply in fungal pellets and optimizing processes and pellet morphologies accordingly.
Implemention of Innovative Process Analytical Technologies to Characterize Critical Quality Attributes of Co-Formulated Monoclonal Antibody Products
Characterizing co-formulated monoclonal antibodies (mAbs) poses significant challenges in the pharmaceutical industry. Due to the high structural similarity of the mAbs, traditional analytical methods, compounded by the lengthy method development process, hinder product development and manufacturing efficiency. There is increasing critical need in the pharmaceutical industry to streamline analytical approaches, minimizing time and resources, ensuring a rapid clinical entry and cost-effective manufacturing. This study investigates the application of process analytical technologies (PAT) to address such challenges. Our investigation introduces two complementary technologies, on-line ultra-performance liquid chromatography (online UPLC) and multimode fluorescence spectroscopy (MMFS), as potential PAT tools tailored for characterizing critical quality attributes (CQA) in co-formulated mAb products. Specifically, the CQAs under evaluation include the total protein concentration of the mAbs within the co-formulation and the ratio of mAb A to mAb B. Online UPLC enables direct and automated measurement of the CQAs through physical separation, while MMFS determines them in a non-destructive and more swift manner based on chemometric modeling. We demonstrate these technologies' comparable performance to conventional methods, alongside substantial benefits such as reduced analytical turnaround time and decreased laboratory efforts. Ultimately, integrating them as innovative PAT tools expedites the delivery of therapeutic solutions to patients and enhances manufacturing efficiency, aligning with the imperative for swift translation of scientific discoveries into clinical benefits.
Metabolic Engineering of Nonmodel Yeast Issatchenkia orientalis SD108 for 5-Aminolevulinic Acid Production
Biological production of 5-aminolevulinic acid (5-ALA) has received growing attention over the years. However, there is the tradeoff between 5-ALA biosynthesis and cell growth because the fermentation broth will become acidic due to the production of 5-ALA. To address this limitation, we engineered an acid-tolerant yeast, Issatchenkia orientalis SD108, for 5-ALA production. We first discovered that the cell growth rate of I. orientalis SD108 was boosted by 5-ALA and its endogenous ALA synthetase (ALAS) showed higher activity than those homologs from other yeasts. The titer of 5-ALA was improved from 28 mg/L to 120-, 150-, and 300 mg/L, by optimizing plasmid design, overexpressing a transporter, and increasing gene copy number, respectively. After redirecting the metabolic flux using the pyruvate decarboxylase (PDC) knockout strain (SD108ΔPDC) and culturing with urea, we increased the titer of 5-ALA to 510 mg/L, a 13-fold enhancement, proving the importance of the newly identified IoALAS with higher activity and the strategic selection of nitrogen sources for knockout strains. This study demonstrates the acid-tolerant I. orientalis SD108ΔPDC has a high potential for 5-ALA production at a large scale in the future.
Correction to "A High-Throughput Expression and Screening Platform for Applications-Driven PETase Engineering"
Mathematical Modeling and Simulation of 1,3-Propanediol Production by Klebsiella pneumoniae BLh-1 in a Batch Bioreactor Using Bayesian Statistics
Mathematical modeling and computer simulation are fundamental for optimizing biotechnological processes, enabling cost reduction and scalability, thereby driving advancements in the bioindustry. In this work, mathematical modeling and estimation of fermentative kinetic parameters were carried out to produce 1,3-propanediol (1,3-PDO) from residual glycerol and Klebsiella pneumoniae BLh-1. The Markov chain Monte Carlo method, using the Metropolis-Hastings algorithm, was applied to experimental data from a batch bioreactor under aerobic and anaerobic conditions. Sensitivity analysis and parameter evolution studies were conducted. The root-mean-square error (rRMSE) was chosen as the validation and calibration metric for the developed mathematical model. The results indicated that the average tolerance of glycerol was 174.68 and 44.85 g L, the inhibitory products was 150.95 g L for ethanol and 35.56 g L for 1,3-PDO, and the maximum specific rate of cell growth was 0.189 and 0.275 h, for aerobic and anaerobic cultures, respectively. The model presented excellent fits in both crops, with rRMSE values between 0.09 - 33.74% and 3.58 - 31.82%, for the aerobic and anaerobic environment, respectively. With this, it was possible to evaluate and extract relevant information for a better understanding and control of the bioprocess.
Perfusion Process Intensification for Lentivirus Production Using a Novel Scale-Down Model
Process intensification has become an important strategy to lower production costs and increase manufacturing capacities for biopharmaceutical products. In particular for the production of viral vectors like lentiviruses (LVs), the transition from (fed-)batch to perfusion processes is a key strategy to meet the increasing demands for cell and gene therapy applications. However, perfusion processes are associated with higher medium consumption. Therefore, it is necessary to develop appropriate small-scale models to reduce development costs. In this work, we present the use of the acoustic wave separation technology in combination with the Ambr 250 high throughput bioreactor system for intensified perfusion process development using stable LV producer cells. The intensified perfusion process developed in the Ambr 250 model, performed at a harvest rate of 3 vessel volumes per day (VVD) and high cell densities, resulted in a 1.4-fold higher cell-specific functional virus yield and 2.8-fold higher volumetric virus yield compared to the control process at a harvest rate of 1 VVD. The findings were verified at bench scale after optimizing the bioreactor set-up, resulting in a 1.4-fold higher cell-specific functional virus yield and 3.1-fold higher volumetric virus yield.
Adaptation of Aglycosylated Monoclonal Antibodies for Improved Production in Komagataella phaffii
Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals manufactured by well-established processes using Chinese Hamster Ovary (CHO) cells. Next-generation biomanufacturing using alternative hosts like Komagataella phaffii could improve the accessibility of these medicines, address broad societal goals for sustainability, and offer financial advantages for accelerated development of new products. Antibodies produced by K. phaffii, however, may manifest unique molecular quality attributes, like host-dependent, product-related variants, that could raise potential concerns for clinical use. We demonstrate here conservative modifications to the amino acid sequence of aglycosylated antibodies based on the human IgG1 isotype that minimize product-related variations when secreted by K. phaffii. A combination of 2-3 changes of amino acids reduced variations across six different aglycosylated versions of commercial mAbs. Expression of a modified sequence of NIST mAb in both K. phaffii and CHO cells showed comparable biophysical properties and molecular variations. These results suggest a path toward the production of high-quality mAbs that could be expressed interchangeably by either yeast or mammalian cells. Improving molecular designs of proteins to enable a range of manufacturing strategies for well-characterized biopharmaceuticals could accelerate global accessibility and innovations.
Regeneration of Spent Culture Media for Sustainable and Continuous mAb Production via Ion Concentration Polarization
In modern bioprocessing, cell culture media is one of the most significant cost drivers, yet the nutrients and other critical factors in the media are often not fully utilized. With the renewed emphasis on reducing the cost of bioprocessing, there is much interest in reducing the overall use of cell culture media. In this work, we introduce a mesoscale microfluidic separation device based on the ion concentration polarization (ICP) process to regenerate the spent media for reuse by removing critical waste products from the cell culture that are known to inhibit the growth of the cells. We demonstrated that up to 75% of spent culture media can be regenerated and reused without affecting the cell viability. A detailed analysis of the materials consumed during antibody production indicated that one could improve the water process mass intensity by up to 33% by regenerating and recycling the media. Given that ICP separation systems have already been scaled up to support large-volume processing, it would be feasible to deploy this technology for manufacturing scale bioreactors (e.g., 50 L perfusion culture of CHO cells), reducing the overall operation cost and water use.
Streamlined Clarification and Capture Process for Monoclonal Antibodies Using Fluidized Bed Centrifugation and Multi-Column Chromatography With Membrane Adsorbers
Harmonizing unit operations in the downstream process of monoclonal antibodies (mAbs) has a high potential to overcome throughput limitations and reduce manufacturing costs. This study proposes a streamlined clarification and capture (S-CC) process concept for the continuous processing of cell broth harvested from a connected bioreactor. The process was realized with a fluidized bed centrifuge connected to depth and sterile filters, a surge tank, and a multi-column chromatography (MCC) unit. The MCC unit was operated in the rapid cycling simulated moving bed (RC-BioSMB) mode with five convective diffusive membrane adsorbers (MAs). A control strategy and the surge tank were used to adjust the loading flow rate of the MCC unit. The mAb was recovered with a total process yield of 90%, with high removal of the process-related impurities HCP (2.1 LRV) and DNA (2.9 LRV). Moreover, the S-CC process productivity of 4.2 g h was up to 5.3 times higher than for comparable, hypothetical batch MA processes. In addition, the buffer consumption of the capture step could be reduced from 2.0 L g in batch mode to 1.2 L g in the RC-BioSMB mode. These results demonstrate the high potential of streamlined interconnected unit operations to improve the overall mAb downstream process performance.
Urea-Loaded PLGA Microspheres as Chemotaxis Stimulants for Helicobacter pylori
Helicobacter pylori cells undergo chemotaxis toward several small molecules, called chemo-attractants, including urea produced by the epithelial cells of the stomach. The biophysical mechanisms of chemotaxis are not well understood in H. pylori. Here, we developed point sources of urea by encapsulating it in Poly(lactic-co-glycolic acid) or PLGA microbeads for H. pylori chemotaxis studies. Microscopy and Dynamic Light Scattering characterization indicated that the PLGA particles had an average diameter of < 0.8 μm. The particles were relatively stable and had a net negative surface charge. Absorbance measurements indicated that the beads released ~70% of the urea over a 2-week period, with most of the release occurring within the first 24-h period. Varying pH (2.0-7.0) had little effect on the rate of urea release. A diffusion model predicted that such beads could generate sufficient urea gradients to chemotactically attract H. pylori cells. Single-bead single-cell chemotaxis assays confirmed the predictions, revealing that H. pylori continued to be attracted to beads even after most of the urea had been released in the first 24 h. Our work highlights a novel use of PLGA microbeads as delivery vehicles for stimulating a chemotaxis response in H. pylori, with potential applications in bacterial eradication strategies.
Advances in Artificially Designed Antibacterial Active Antimicrobial Peptides
Antibacterial resistance has emerged as a significant global concern, necessitating the urgent development of new antibacterial drugs. Antimicrobial peptides (AMPs) are naturally occurring peptides found in various organisms. Coupled with a wide range of antibacterial activity, AMPs are less likely to develop drug resistance and can act as potential agents for treating bacterial infections. However, their characteristics, such as low activity, instability, and toxicity, hinder their clinical application. Consequently, researchers are inclined towards artificial design and optimization based on natural AMPs. This review discusses the research advancements in the field of artificial designing and optimization of various AMPs. Moreover, it highlights various strategies for designing such peptides, aiming to provide valuable insights for developing novel AMPs.
Reshaping the substrate-binding pocket of acyl-ACP reductase to enhance the production of sustainable aviation fuel in Escherichia coli
To reduce carbon emissions and address environmental concerns, the aviation industry is exploring the use of sustainable aviation fuel (SAF) as an alternative to traditional fossil fuels. In this context, bio-alkane is considered a potentially high-value solution. The present study focuses on the enzymes acyl-acyl carrier protein [ACP] reductase (AAR) and aldehyde-deformylating oxygenase (ADO), which are crucial enzymes for alka(e)ne biosynthesis. By using protein engineering techniques, including semi-rational design and site-directed mutagenesis, we aimed to enhance the substrate specificity of AAR and improve alkane production efficiency. The co-expression of a modified AAR (Y26G/Q40M mutant) with wild-type ADO in Escherichia coli significantly increased alka(e)ne production from 28.92 mg/L to 167.30 mg/L, thus notably demonstrating a 36-fold increase in alkane yield. This research highlights the potential of protein engineering in optimizing SAF production, thereby contributing to the development of more sustainable and efficient SAF production methods and promoting greener air travel.
Improving the catalytic performance of carbonyl reductase based on the functional loops engineering
Vibegron functions as a potent and selective β-adrenergic receptor agonist, with its chiral precursor (2S,3R)-aminohydroxy ester (1b) being crucial to its synthesis. In this study, loop engineering was applied to the carbonyl reductase (EaSDR6) from Exiguobacterium algae to achieve an asymmetric reduction of the (rac)-aminoketone ester 1a. The variant M5 (A138L/A190V/S193A/Y201F/N204A) was obtained and demonstrated an 868-fold increase in catalytic efficiency (k/K = 260.3 s mM) and a desirable stereoselectivity (>99% enantiomeric excess, e.e.; >99% diastereomeric excess, d.e.) for the target product 1b in contrast to the wild-type EaSDR6 (WT). Structural alignment with WT indicated that loops 137-154 and 182-210 potentially play vital roles in facilitating catalysis and substrate binding. Moreover, molecular dynamics (MD) simulations of WT-1a and M5-1a complex illustrated that M5-1a exhibits a more effective nucleophilic attack distance and more readily adopts a pre-reaction state. The interaction analysis unveiled that M5 enhanced hydrophobic interactions with substrate 1a on cavities A and B while diminishing unfavorable hydrophilic interactions on cavity C. Computational analysis of binding free energies indicated that M5 displayed heightened affinity towards substrate 1a compared to the WT, aligning with its decreased K value. Under organic-aqueous biphasic conditions, the M5 mutant showed >99% conversion within 12 h with 300 g/L substrate 1a (highest substrate loading as reported). This study enhanced the catalytic performance of carbonyl reductase through functional loops engineering and established a robust framework for the large-scale biosynthesis of the vibegron intermediate.
Adjustment of the main biosynthesis modules to enhance the production of l-homoserine in Escherichia coli W3110
l-homoserine is an important platform compound of many valuable products. Construction of microbial cell factory for l-homoserine production from glucose has attracted a great deal of attention. In this study, l-homoserine biosynthesis pathway was divided into three modules, the glucose uptake and upstream pathway, the downstream pathway, and the energy supply module. Metabolomics of the chassis strain HS indicated that the supply of ATP was inadequate, therefore, the energy supply module was firstly modified. By balancing the ATP supply module, the l-homoserine production increased by 66% to 12.55 g/L. Further, the results indicated that the upstream pathway was blocked, and increasing the culture temperature to 37°C could solve this problem and the l-homoserine production reached 21.38 g/L. Then, the downstream synthesis pathways were further strengthened to balance the fluxes, and the l-homoserine production reached the highest reported level of 32.55 g/L in shake flasks. Finally, fed-batch fermentation in a 5-L bioreactor was conducted, and l-homoserine production could reach to 119.96 g/L after 92 h cultivation, with the yield of 0.41 g/g glucose and productivity of 1.31 g/L/h. The study provides a well research foundation for l-homoserine production by microbial fermentation with the capacity for industrial application.
Real Case Study of 600 m Bubble Column Fermentations: Spatially Resolved Simulations Unveil Optimization Potentials for l-Phenylalanine Production With Escherichia coli
Large-scale fermentations (»100 m³) often encounter concentration gradients which may significantly affect microbial activities and production performance. Reliably investigating such scenarios in silico would allow to optimize bioproduction. But related simulations are very rare in particular for large bubble columns. Here, we pioneer the spatially resolved investigation of a 600 m³ bubble column operating for Escherichia coli based l-phenylalanine fed-batch production. Microbial kinetics are derived from experimental data. Advanced Euler-Lagrange (EL) computational fluid dynamics (CFD) simulations are applied to track individual bubble dynamics that result from a recently developed bubble breakage model. Thereon, the complex nonlinear characteristics of hydrodynamics, mass transfer, and microbial activities are simulated for large scale and compared with real data. As a key characteristic, zones for upriser, downcomer, and circulation cells were identified that dominate mixing and mass transfer. This results in complex gradients of glucose, dissolved oxygen, and microbial rates dividing the bioreactor into sections. Consequently, alternate feed designs are evaluated splitting real feed rates in two feeds at different locations. The opposite reversed installation of feed spots and spargers improved the product synthesis by 6.24% while alternate scenarios increased the growth rate by 11.05%. The results demonstrate how sophisticated, spatially resolved simulations of hydrodynamics, mass transfer, and microbial kinetics help to optimize bioreactors in silico.
Elevated endoplasmic reticulum pH is associated with high growth and bisAb aggregation in CHO cells
Chinese hamster ovary (CHO) bioprocesses, the dominant platform for therapeutic protein production, are increasingly used to produce complex multispecific proteins. Product quantity and quality are affected by intracellular conditions, but these are challenging to measure and often overlooked during process optimization studies. pH is known to impact quality attributes like protein aggregation across upstream and downstream processes, yet the effects of intracellular pH on cell culture performance are largely unknown. Recently, advances in protein biosensors have enabled investigations of intracellular environments with high spatiotemporal resolution. In this study, we integrated a fluorescent pH-sensitive biosensor into a bispecifc (bisAb)-producing cell line to investigate changes in endoplasmic reticulum pH (pH). We then investigated how changes in lactate metabolism impacted pH, cellular redox, and product quality in fed-batch and perfusion bioreactors. Our data show pH rapidly increased during exponential growth to a maximum of pH 7.7, followed by a sharp drop in the stationary phase in all perfusion and fed-batch conditions. pH decline in the stationary phase was driven by an apparent loss of cellular pH regulation that occurred despite differences in redox profiles. Finally, we found protein aggregate levels correlated most closely with pH which provides new insights into product aggregate formation in CHO processes. An improved understanding of the intracellular changes impacting bioprocesses can ultimately help guide media optimizations, improve bioprocess control strategies, or provide new targets for cell engineering.
Engineering GID4 for use as an N-terminal proline binder via directed evolution
Nucleic acid sequencing technologies have gone through extraordinary advancements in the past several decades, significantly increasing throughput while reducing cost. To create similar advancement in proteomics, numerous approaches are being investigated to advance protein sequencing. One of the promising approaches uses N-terminal amino acid binders (NAABs), also referred to as recognizers, that selectively can identify amino acids at the N-terminus of a peptide. However, there are only a few engineered NAABs currently available that bind to specific amino acids and meet the requirements of a biotechnology reagent. Therefore, additional NAABs need to be identified and engineered to enable confident identification and, ultimately, de novo protein sequencing. To fill this gap, a human protein GID4 was engineered to create a NAAB for N-terminal proline (Nt-Pro). While native GID4 binds Nt-Pro, its binding is weak (µmol/L) and greatly influenced by the identity of residues following the Nt-Pro. Through directed evolution, yeast-surface display, and fluorescence-activated cell sorting, we identified sequence variants of GID4 with increased binding response to Nt-Pro. Moreover, variants with an A252V mutation showed a reduced influence from residues in the second and third positions of the target peptide when binding to Nt-Pro. The workflow outlined here is shown to be a viable strategy for engineering NAABs, even when starting from native Nt-binding proteins whose binding is strongly impacted by the identity of residues following Nt-amino acid.
Inhibition Control by Continuous Extractive Fermentation Enhances De Novo 2-Phenylethanol Production by Yeast
Current microbial cell factory methods for producing chemicals from renewable resources primarily rely on (fed-)batch production systems, leading to the accumulation of the desired product. Industrially relevant chemicals like 2-phenylethanol (2PE), a flavor and fragrance compound, can exhibit toxicity at low concentrations, inhibit the host activity, and negatively impact titer, rate, and yield. Batch liquid-liquid (L-L) In Situ Product Removal (ISPR) was employed to mitigate inhibition effects, but was not found sufficient for industrial-scale application. Here, we demonstrated that continuous selective L-L ISPR provides the solution for maintaining the productivity of de novo produced 2PE at an industrial pilot scale. A unique bioreactor concept called "Fermentation Accelerated by Separation Technology" (FAST) utilizes hydrostatic pressure differences to separate aqueous- and extractant streams within one unit operation, where both production and product extraction take place - allowing for the control of the concentration of the inhibiting compound. Controlled aqueous 2PE levels (0.43 ± 0.02 g kg) and extended production times (>100 h) were obtained and co-inhibiting by-product formation was reduced, resulting in a twofold increase of the final product output of batch L-L ISPR approaches. This study establishes that continuous selective L-L ISPR, enabled by FAST, can be applied for more economically viable production of inhibiting products.
Defining Golden Batches in Biomanufacturing Processes From Internal Metabolic Activity to Detect Process Changes That May Affect Product Quality
Cellular metabolism plays a role in the observed variability of a drug substance's Critical Quality Attributes (CQAs) made by biomanufacturing processes. Therefore, here we describe a new approach for monitoring biomanufacturing processes that measures a set of metabolic reaction rates (named Critical Metabolic Parameters (CMP) in addition to the macroscopic process conditions currently being used as Critical Process Parameters (CPP) for biomanufacturing. Constraint-based systems biology models like Flux Balance Analysis (FBA) are used to estimate metabolic reaction rates, and metabolic rates are used as inputs for multivariate Batch Evolution Models (BEM). Metabolic activity was reproducible among batches and could be monitored to detect a deliberately induced macroscopic process shift (i.e., temperature change). The CMP approach has the potential to enable "golden batches" in biomanufacturing processes to be defined from the internal metabolic activity and to aid in detecting process changes that may impact the quality of the product. Overall, the data suggested that monitoring of metabolic activity has promise for biomanufacturing process control.
Protein Scaffold-Mediated Multi-Enzyme Self-Assembly and Ordered Co-Immobilization of Flavin-Dependent Halogenase-Coenzyme Cycle System for Efficient Biosynthesis of 6-Cl-L-Trp
Flavin-dependent halogenase (FDH) is highly prized in pharmaceutical and chemical industries for its exceptional capacity to produce halogenated aromatic compounds with precise regioselectivity. This study has devised a multi-enzyme self-assembly strategy to construct an effective and reliable in vitro coenzyme cycling system tailored for FDHs. Initially, tri-enzyme self-assembling nanoclusters (TESNCs) were developed, comprising glucose dehydrogenase (GDH), flavin reductase (FR) and FDH. The TESNCs exhibited enhanced thermal stability and conversion efficiency compared to free triple enzyme mixtures during the conversion of L-Trp to 6-Cl-L-Trp, resulting in a 2.1-fold increase in yield. Subsequently, an ordered co-immobilization of GDH, FR, and FDH was established, further amplifying the stability and catalytic efficiency of the FDH coenzyme cycle system. Compared to the free TESNCs, the immobilized TESNCs demonstrated a 4.2-fold increase in catalytic efficiency in a 5 mL reaction system. This research provides an effective strategy for developing a robust and efficient coenzyme recycling system for FDHs.
Design an Energy-Conserving Pathway for Efficient Biosynthesis of 1,5-Pentanediol and 5-Amino-1-Pentanol
1,5-Pentanediol (1,5-PDO) is an important five-carbon alcohol, widely used in polymer and pharmaceutical industries. Considering the substantial energy (ATP and NADPH) requirements of previous pathways, an energy-conserving artificial pathway with a higher theoretical yield (0.75 mol/mol glucose) was designed and constructed in this study. In this pathway, lysine is converted into 1,5-PDO by decarboxylation, two transamination, and two reduction reactions. For the purpose of full pathway construction, 5-aminopetanal reductase and 5-amino-1-pentanol (5-APO) transaminase were identified and characterized. By implementing strategies such as modular optimization of gene expression, enhancing lysine biosynthesis and increasing NADPH supply, the engineered strains were able to produce 1502.8 mg/L 5-APO and 726.2 mg/L 1,5-PDO in shake flasks and 11.7 g/L 1,5-PDO in a 3 L bioreactor. This work provides a new and promising pathway for the efficient production of 5-APO and 1,5-PDO.