HUMAN GENE THERAPY

Blood Cancers Reported in Seven Children Dosed with SKYSONA™
Philippidis A
Voice of the Patient Report on GM2 Gangliosidosis (Tay-Sachs and Sandhoff)
Flynn K and Jussila D
Cyclosporin H Improves the Transduction of CD34 Cells with an Anti-Sickling Globin Vector, a Possible Therapeutic Approach for Sickle Cell Disease
Mormin M, Rigonnot L, Chalumeau A, Miccio A, Fournier C, Pajanissamy S, Dewannieux M and Galy A
Sickle cell disease (SCD) is a debilitating monogenic disease originating from mutations in the hemoglobin beta chain gene producing an abnormal hemoglobin HbS. The polymerization of HbS is responsible for the sickling of erythrocytes leading to anemia and vaso-occlusive events. Gene therapy is a promising treatment of SCD, and two different gene therapy drugs, using gene editing or gene transfer, have already reached the marketing stage. There is still a need to improve the efficacy of gene therapy in SCD, particularly when using anti-sickling beta-globin gene transfer strategies, which must outcompete the pathological HbS. One possibility is to increase transduction by inhibiting lentiviral restriction factors such as interferon-induced transmembrane proteins (IFITMs). This can be achieved by the addition of cyclosporin H (CsH) during the transduction process. This strategy was applied here in CD34 hematopoietic progenitor and stem cells obtained from cord blood (CB). A first series of experiments with lentiviral vector coding for a green fluorescent protein (GFP) gene confirmed that the addition of CsH enhanced transgene expression levels and vector copy number per cell (VCN), while CD34 cells remained viable and functional. Notably, the production of colony-forming cells (CFC) remained unaffected unless very high VCN values were reached. In a second step, CD34 cells obtained from the CB of newborns with homozygous ( = 2) or heterozygous ( = 1) SCD mutations were transduced with the GLOBE-AS3 lentiviral vector coding for the HbAS3 anti-sickling beta globin. As with GFP, GLOBE-AS3 lentiviral transduction was clearly enhanced by CsH, leading to VCN > 2 and therapeutic levels of expression of the HbAS3. Moreover, the process did not affect the viability or functions of CFC. The combination of CB progenitors, the GLOBE-AS3 vector, and CsH is thus shown here to be a promising approach for the treatment of SCD.
Focused Ultrasounds as an Adeno-Associated Virus Gene Therapy-Empowering Tool in Juvenile Mice via Intracerebroventricular Administration
Zappala A, Li H and Inoue K
Systemic delivery of adeno-associated virus (AAV) vectors targeting the central nervous system has the potential to solve many neurodevelopmental disorders, yet it is made difficult by the filtering effect of the blood-brain barrier and systemic complications. To overcome this limitation, we attempted to inject a Venus-expressing, oligodendrocyte-selective AAV9 viral vector in the ventricles together with lipid microbubbles and subjected them to focused ultrasound (FUS); the resulting mechanical stimulation on the brain ventricles is able to open small, temporary gaps from which vector particles can leak and spread. Our findings indicate that FUS can increase viral vector diffusion across both the anteroposterior and left-right axes without influencing cell tropism; significant effects were found with 60 and 90 s exposure time, but no effects were observed with longer intervals. Taken together, these results highlight a new strategy for the safe and effective delivery of viral vectors and offer new perspectives for the development and application of gene therapies for central nervous system diseases.
Suppression of CNS APOE4 Expression by miRNAs Delivered by the S2 AAVrh.10 Capsid-Modified AAV Vector
Karan KR, Andrzejewski S, Stiles KM, Hackett NR and Crystal RG
The homozygous Apolipoprotein E (APOE4) genotype is the major risk factor for the development of early Alzheimer's disease. Genome engineering studies in mouse models of human APOE4-dependent pathology have established that reduction of APOE4 expression can rescue the phenotype. We hypothesized that APOE4 could be suppressed in the CNS of APOE4 homozygotes using adeno-associated virus (AAV) expression of microRNAs (miRNA) designed to hybridize to APOE mRNA. We screened nine different miRNAs targeting APOE following transfection in HEK293T and Huh7 cells. Optimal APOE suppression was obtained with mir2A (targeting coding region nt330-351) and mirN4 (3' untranslated region nt1142-1162). miRNA expression cassettes were designed with two copies of each of these two miRNAs co-expressed with a mCherry transgene. To optimize delivery of these miRNAs, an engineered AAVrh.10 variant was identified from a screen of multiple peptide insertions into capsid loop IV and substitutions in loop VIII. This led to identifying the AAV.S2 capsid with enhanced transduction of both neurons and glia and enhanced distribution in the brain. The engineered capsid was used to deliver the APOE miRNA suppression cassette to the hippocampus of TRE4 mice (human APOE4 knock-in replacement of the murine apoE locus). Two weeks after intra-hippocampus administration, regional expression of miRNA at the injection site was quantified at the mRNA level relative to an endogenous reference. The AAV.S2 capsid provided 2.31 ± 0.37-fold higher expression of miRNA over that provided by AAVrh.10 ( < 0.05). In the targeted region, a single intra-hippocampus AAV.S2 administration suppressed hippocampal APOE4 mRNA levels by 76.5 ± 3.9% compared with 41.3 ± 3.3% with the same cassette delivered by the wildtype AAVrh.10 capsid ( < 0.0001). We conclude that an expression cassette with two different miRNAs targeting APOE4 delivered by the AAV.S2 capsid will generate highly significant suppression of APOE4 in the CNS.
Long-Term Survival and Myocardial Function Following Systemic Delivery of Delandistrogene Moxeparvovec in DMD Rats
Baine S, Wier C, Lemmerman L, Cooper-Olson G, Kempton A, Haile A, Endres J, Fedoce A, Nesbit E, Rodino-Klapac LR and Potter RA
Delandistrogene moxeparvovec is a gene transfer therapy for Duchenne muscular dystrophy (DMD) that uses an adeno-associated viral vector to deliver a micro-dystrophin transgene to skeletal and cardiac muscle. This study evaluated the long-term survival and cardiac efficacy of delandistrogene moxeparvovec in a DMD-mutated (DMD) rat model of DMD-related cardiomyopathy. DMD male rats, aged 21-42 days, were injected with 1.33 × 10 viral genomes/kilogram (vg/kg) delandistrogene moxeparvovec and followed for 12, 24, and 52 weeks. Ambulation was recorded the Photobeam Activity System, whereas echocardiograms, cardiomyocyte contractility, calcium handling, and histological analysis of fibrosis were used to evaluate cardiac disease at 12-, 24-, and 52-weeks post-treatment. A separate cohort of rats was used to assess the impact of delandistrogene moxeparvovec on survival. Treatment with delandistrogene moxeparvovec extended median survival in DMD rats to >25 months versus the 13-month median survival in saline-control-treated DMD rats. Compared with saline control, delandistrogene moxeparvovec therapy elicited statistically significant improvements across cardiac parameters approaching wild-type values with additional benefits in mobility, histopathology, and fibrosis observed. Transgene expression was maintained up to >25 months and micro-dystrophin expression was broadly distributed across skeletal and cardiac muscle. Taken together, these findings demonstrate long-term cardiac efficacy and improved survival following delandistrogene moxeparvovec treatment in DMD rats.
Oncolytic Vaccinia Virus Encoding Lectin Suppresses the Proliferation of Gastric Cancer Cells
Zhu B, Hong Z, Zhu J, Yu J, Zhou Y, Chen K, Ye T and Li G
Our previous research has demonstrated that the oncolytic vaccinia virus encoding lectin (oncoVV-AVL), an oncolytic vaccinia virus engineered to carry the AVL, exhibits potent cytotoxic effects on colorectal and hepatocellular cancer cells. Based on this foundation, we undertook a series of experiments to explore its efficacy on gastric cancer (GC) cells. Our findings revealed that oncoVV-AVL significantly increased reactive oxygen species levels and suppressed the expression of nuclear factor erythroid 2-related factor 2, thereby enhancing viral replication and disrupting the cellular redox balance, ultimately leading to the demise of cancer cells. Additionally, our investigations uncovered that oncoVV-AVL reprogrammed the metabolic microenvironment to favor viral replication, culminating in the lysis of cancer cells. Furthermore, we observed that oncoVV-AVL not only regressed tumor growth but also induced tumor tissue necrosis. These promising results suggest potential new avenues for the therapeutic management of GC.
Prevalence of Neutralizing Antibodies Against AAV Serotypes 2 and 9 in Healthy Participants from Multiple Centers Across China and Patients with DMD/BMD
Qin X, Li H, Zhao H, Xiang K, Liu S, Lou R, Liu P, Dai Y, Wang C and Zhang S
To facilitate adeno-associated virus (AAV)-mediated gene therapy in China, we conducted a study on the distribution of AAV-neutralizing antibodies (NAbs) in healthy subjects and in patients with Duchenne muscular dystrophy (DMD)/Becker muscular dystrophy (BMD). A total of 352 healthy adult controls (ACs) from a national multicenter study, 100 schoolchild controls (SCs), and 281 patients with DMD/BMD from Peking Union Medical College Hospital were enrolled in this study. Cell-based inhibition assays were applied, and serum samples demonstrating 50% inhibition of infection were considered positive. The seroprevalence of AAV2 and AAV9 NAbs among the 733 participants was 86.1% and 56.3%, respectively. The AAV2 NAbs and AAV9 NAbs positivity rates in the AC, SC, and DMD/BMD groups were 97.4%/86.6%, 100.0%/17.0%, and 66.9%/32.4%, respectively. The seroprevalence of AAV NAbs gradually increased with age, especially in AAV9 NAbs. Females tended to have higher positivity rate than males. Over 85% of ACs had overlapping AAV9 and AAV2 infection. However, being positive for only AAV2 NAbs in the SC group was common, and 30.6% of patients with DMD/BMD were negative for both AAV2 and AAV9 NAbs. Our findings reveal that a significant proportion of patients with DMD/BMD were negative for AAV2 and AAV9 NAbs, which is the population that is most amenable to being treated with gene therapy.
Neuroimaging Applications for the Delivery and Monitoring of Gene Therapy for Central Nervous System Diseases
Daci R, Gray-Edwards H, Shazeeb MS, Vardar Z, Vachha B, Cataltepe OI and Flotte TR
Neurological disease due to single-gene defects represents a targetable entity for adeno-associated virus (AAV)-mediated gene therapy. The delivery of AAV-mediated gene therapy to the brain is challenging, owing to the presence of the blood-brain barrier. Techniques in gene transfer, such as convection-enhanced intraparenchymal delivery and image-guided delivery to the cerebrospinal fluid spaces of the brain, have led the field into highly accurate delivery techniques, which provide correction of genetic defects in specific brain regions or more broadly. These techniques commonly use magnetic resonance imaging (MRI), computed tomography, and fluoroscopic guidance. Even more, the neuroimaging changes evaluated by MRI, MR spectroscopy, diffusion tensor imaging, and functional MRI can serve as important biomarkers of therapy effect and overall disease progression. Here, we discuss the role of neuroimaging in delivering AAV vectors and monitoring the effect of gene therapy.
Lentiviral Vector-Mediated Hematopoietic Stem Cell Gene Therapy for Mucopolysaccharidosis IVA Murine Model
Celik B, Rintz E, Sansanwal N, Khan S, Bigger B and Tomatsu S
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disease caused by a mutation in the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) gene resulting in progressive systemic skeletal dysplasia. There is currently no effective treatment available for this skeletal condition. Thus, the development of a new therapy stands as an unmet challenge in reversing or alleviating the progression of the disease. Our research, which could be a game-changer, hypothesizes that lentiviral (LV) gene therapy (GT) could produce the supraphysiological level of active GALNS enzyme by hematopoietic stem cells (HSCs) transduced with LVs carrying the native GALNS gene under two different promoters (CBh and COL2A1), impacting bone and cartilage abnormalities in MPS IVA. We conditioned newborn knock-out (Galns) MPS IVA mice with busulfan and intravenously transplanted LV-modified HSCs isolated from the bone marrow of Galns donor mice. Transplanted mice were autopsied at 16 weeks, and tissues were collected to assess the therapeutic efficacy of modified HSCs in MPS IVA mice. Although HSC-LV-CBh-hGALNS provided a higher GALNS enzyme activity in plasma, HSC-LV-COL2A1-hGALNS stably corrected heart and bone abnormalities better under a low level of GALNS enzyme. Our findings suggest that LV-GT may potentially treat MPS IVA.
Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs
Castillo SR, Simone BW, Clark KJ, Devaux P and Ekker SC
DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs work in pairs, with each arm composed of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants. Nonetheless, given the intrinsic properties of TALE proteins, several target sites in human mtDNA are predicted to remain out of reach to DdCBEs and other TALE-based technologies. Specifically, due to the conventional requirement for a thymine immediately upstream of the TALE target sequences (, the 5'-T constraint), over 150 loci in the human mitochondrial genome are presumed to be inaccessible to DdCBEs. Previous attempts at circumventing this requirement, either by developing monomeric DdCBEs or utilizing DNA-binding domains alternative to TALEs, have resulted in suboptimal specificity profiles with reduced therapeutic potential. Here, aiming to challenge and elucidate the relevance of the 5'-T constraint in the context of DdCBE-mediated mtDNA editing, and to expand the range of motifs that are editable by this technology, we generated DdCBEs containing TALE proteins engineered to recognize all 5' bases. These modified DdCBEs are herein referred to as αDdCBEs. Notably, 5'-T-noncompliant canonical DdCBEs efficiently edited mtDNA at diverse loci. However, they were frequently outperformed by αDdCBEs, which exhibited significant improvements in activity and specificity, regardless of the most 5' bases of their TALE binding sites. Furthermore, we showed that αDdCBEs are compatible with the enhanced DddA variants DddA6 and DddA11, and we validated TALE shifting with αDdCBEs as an effective approach to optimize base editing outcomes. Overall, αDdCBEs enable efficient, specific, and unconstrained mitochondrial base editing.
Cell-Penetrating Peptides and CRISPR-Cas9: A Combined Strategy for Human Genetic Disease Therapy
de Morais CCPL, Correia EM, Bonamino MH and Vasconcelos ZFM
The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) technology has revolutionized the field of genetic engineering, offering unprecedented potential for the targeted manipulation of DNA sequences. Advances in the mechanism of action of the CRISPR-Cas9 system allowed potential applicability for the treatment of genetic diseases. CRISPR-Cas9's mechanism of action involves the use of an RNA guide molecule to target-specific DNA sequences and the Cas9 enzyme to induce precise DNA cleavage. In the context of the CRISPR-Cas9 system, this review covers nonviral delivery methods for gene editing based on peptide internalization. Here, we describe critical areas of discussion such as immunogenicity, emphasizing the importance of safety, efficiency, and cost-effectiveness, particularly in the context of treating single-mutation genetic diseases using advanced editing techniques genetics as prime editor and base editor. The text discusses the versatility of cell-penetrating peptides (CPPs) in forming complexes for delivering biomolecules, particularly ribonucleoprotein for genome editing with CRISPR-Cas9 in human cells. In addition, it emphasizes the promise of combining CPPs with DNA base editing and prime editing systems. These systems, known for their simplicity and precision, hold great potential for correcting point mutations in human genetic diseases. In summary, the text provides a clear overview of the advantages of using CPPs for genome editing with CRISPR-Cas9, particularly in conjunction with advanced editing systems, highlighting their potential impact on clinical applications in the treatment of single-mutation genetic diseases. [Figure: see text].
Astellas Shutting Gene Therapy Facility in South San Francisco, CA
Philippidis A
Adeno-Associated Virus Gene Transfer Ameliorates Progression of Skeletal Lesions in Mucopolysaccharidosis IVA Mice
Herreño-Pachón AM, Sawamoto K, Stapleton M, Khan S, Piechnik M, Álvarez JV and Tomatsu S
Mucopolysaccharidosis type IVA (MPS IVA) is an autosomal congenital metabolic lysosomal disease caused by a deficiency of the -acetyl-galactosamine-6-sulfate sulfatase (GALNS) gene, leading to severe skeletal dysplasia. The available therapeutics for patients with MPS IVA, enzyme replacement therapy and hematopoietic stem cell transplantation, revealed limitations in the impact of skeletal lesions. Our previous study, a significant leap forward in MPS IVA research, showed that liver-targeted adeno-associated virus (AAV) gene transfer of human GALNS (hGALNS) restored GALNS enzymatic activity in blood and multiple tissues and partially improved the aberrant accumulation of storage materials. This promising approach was further validated in our current study, where we delivered AAV8 vectors expressing hGALNS, under the control of a liver-specific or ubiquitous promoter, into MPS IVA murine disease models. The results were highly encouraging, with both AAV8 vectors leading to supraphysiological enzymatic activity in plasma and improved cytoplasmic vacuolization of chondrocytes in bone lesions of MPS IVA mice. Notably, the ubiquitous promoter constructs, a potential game-changer, resulted in significantly greater enzyme activity levels in bone and improved pathological findings of cartilage lesions in these mice than in a liver-specific one during the 12-week monitoring period, reinforcing the positive outcomes of our research in MPS IVA treatment.
Gene Editing by Ferrying of CRISPR/Cas Ribonucleoprotein Complexes in Enveloped Virus-Derived Particles
Janns JH and Mikkelsen JG
The invention of next-generation CRISPR/Cas gene editing tools, like base and prime editing, for correction of gene variants causing disease, has created hope for use in patients leading to wider clinical translation. To realize this potential, delivery vehicles that can ferry gene editing tool kits safely and effectively into specific cell populations or tissues are in great demand. In this review, we describe the development of enveloped retrovirus-derived particles as carriers of "ready-to-work" ribonucleoprotein complexes consisting of Cas9-derived editor proteins and single guide RNAs. We present arguments for adapting viruses for cell-targeted protein delivery and describe the status after a decade-long development period, which has already shown effective editing in primary cells, including T cells and hematopoietic stem cells, and in tissues targeted , including mouse retina, liver, and brain. Emerging evidence has demonstrated that engineered virus-derived nanoparticles can accommodate both base and prime editors and seems to fertilize a sprouting hope that such particles can be further developed and produced in large scale for therapeutic applications.
Alpharetroviral Vector-Mediated Gene Therapy for IL7RA-Deficient Severe Combined Immunodeficiency
Ha TC, Morgan MA, Thrasher AJ and Schambach A
Severe combined immunodeficiency (SCID) encompasses rare primary immunodeficiency disorders characterized by deficient T-cell development, which leads to a severely compromised immune system and susceptibility to life-threatening infections. Among SCID subtypes, IL7RA-SCID is caused by mutations in the interleukin 7 receptor alpha chain (IL7RA) and represents a significant subset of patients with limited treatment options. This study investigated the efficacy of a self-inactivating (SIN) alpharetroviral vector (ARV) engineered to deliver a codon-optimized cDNA to restore T-cell development in -knockout mice. We compared the elongation factor 1 alpha short (EFS) promoter and the lymphoid-restricted Lck promoter for their ability to drive IL7RA expression and found that the EFS promoter enabled robust and sustained IL7RA expression that led to the functional rescue of T-lymphopoiesis and . Conversely, though effective , the Lck promoter failed to produce viable T-cell populations . Our results highlight the potential of using SIN-ARVs as a gene therapy (GT) strategy for treating IL7RA-SCID. Importantly, sustained production of T-lymphocytes was found in both primary and secondary transplant recipient animals with no adverse effects, supporting the safety and feasibility of this approach. Overall, this study provides valuable insights into the development of GT for IL7RA-SCID and underscores the clinical potential of an EFS-driven SIN-ARV to restore IL7RA-deficient immune function.
SP-101, A Novel Adeno-Associated Virus Gene Therapy for the Treatment of Cystic Fibrosis, Mediates Functional Correction of Primary Human Airway Epithelia From Donors with Cystic Fibrosis
Excoffon KJDA, Lin S, Narayan PKL, Sitaraman S, Jimah AM, Fallon TT, James ML, Glatfelter MR, Limberis MP, Smith MD, Guffanti G and Kolbeck R
Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Although CF affects multiple organs, lung disease is the main cause of morbidity and mortality, and gene therapy is expected to provide a mutation-agnostic option for treatment. SP-101 is a recombinant adeno-associated virus (AAV) gene therapy vector carrying a human minigene, , and is being investigated as an inhalation treatment for people with CF. To further understand SP-101 activity, studies were performed in human airway epithelia (HAE) derived from multiple CF and non-CF donors. SP-101 restored CFTR-mediated chloride conductance, measured via Ussing chamber assay, at a multiplicity of infection (MOI) as low as 5E2 in the presence of doxorubicin, a small molecule known to augment AAV transduction. Functional correction of CF HAE increased with increasing MOI and doxorubicin concentration and correlated with increasing cell-associated vector genomes and mRNA expression. Tropism studies using a fluorescent reporter vector and single-cell mRNA sequencing of SP-101-mediated mRNA demonstrated broad expression in all cell types after apical transduction, including secretory, ciliated, and basal cells. In summary, SP-101, particularly in combination with doxorubicin, shows promise for a novel CF treatment strategy and strongly supports continued development.
Inhalation of SP-101 Followed by Inhaled Doxorubicin Results in Robust and Durable Transgene Expression in the Airways of Wild-Type and Cystic Fibrosis Ferrets
Excoffon KJDA, Smith MD, Falese L, Schulingkamp R, Lin S, Mahankali M, Narayan PKL, Glatfelter MR, Limberis MP, Yuen E and Kolbeck R
Cystic fibrosis (CF) is a serious genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Approved small molecule therapies benefit the majority of people with CF (pwCF), but unfortunately not all. Gene addition offers a mutation agnostic treatment option for all pwCF. SP-101 is an adeno-associated virus gene therapy vector (AAV2.5T) that has been optimized for efficient human airway cell transduction, and that contains a functional and regulated shortened human CFTR minigene () with a small synthetic promoter/enhancer. To understand SP-101 airway distribution, activity, and the associated immune response, studies were performed in wild-type and CF ferrets. After single dose inhaled delivery of SP-101, followed by single dose inhaled doxorubicin (an AAV transduction augmenter) or saline, SP-101 vector genomes were detected throughout the respiratory tract. mRNA expression was highest in ferrets also receiving doxorubicin and persisted for the duration of the study (13 weeks). Pre-existing mucus in the CF ferrets did not present a barrier to effective transduction. Binding and neutralizing antibodies to the AAV2.5T capsid were observed regardless of doxorubicin exposure. Only a portion of ferrets exhibited a weak T-cell response to AAV2.5T and no T-cell response was seen against hCFTRΔR. These data strongly support the continued development of inhaled SP-101, followed by inhaled doxorubicin, for the treatment of CF.
Adeno-Associated Virus Vectors-a Target of Cellular and Humoral Immunity-are Expanding Their Reach Toward Hematopoietic Stem Cell Modification and Immunotherapies
Araujo AE, Bentler M, Perez Garmendia X, Kaleem A, Fabian C, Morgan M, Hacker UT and Büning H
All current market-approved gene therapy medical products for gene therapy of monogenic diseases rely on adeno-associated virus (AAV) vectors. Advances in gene editing technologies and vector engineering have expanded the spectrum of target cells and, thus, diseases that can be addressed. Consequently, AAV vectors are now being explored to modify cells of the hematopoietic system, including hematopoietic stem and progenitor cells (HSPCs), to develop novel strategies to treat monogenic diseases, but also to generate cell- and vaccine-based immunotherapies. However, the cell types that represent important new targets for the AAV vector system are centrally involved in immune responses against the vector and its transgene product as discussed briefly in the first part of this review. In the second part, studies exploring AAV vectors for genetic engineering of HSPCs, T and B lymphocytes, and beyond are presented.
Pfizer Marks Phase III Success in Hemophilia A, then Layoffs after Failure in DMD
Philippidis A
Roche, Ascidian Launch Up-to-$1.8B RNA Exon Editing Collaboration
Philippidis A