EMERGING MARKETS FINANCE AND TRADE

Heart meets brain: A 25-year-old with a constellation of neurologic symptoms and heart failure
Rivera Torres N, Samudralwar R and Berger J
Ideomotor Apraxia and "Milky Way" Sign in Progressive Multifocal Leukoencephalopathy
Eisinger RS, Jones FJ, Pai EL, Xu DJ, Berger JR and Prasad S
A Proposed Approach to Screening and Surveillance Labs for Patients With Multiple Sclerosis on Anti-CD20 Therapy
Gandelman S, Lenzi KA, Markowitz C and Berger JR
Anti-CD20 therapies have proven to be highly effective and safe therapies for multiple sclerosis (MS) and have had rapid uptake in the MS community. However, no clear consensus has arisen regarding an approach to screening or surveillance lab monitoring.
Spinal Cord Sarcoidosis Occurring at Sites of Spondylotic Stenosis, Mimicking Spondylotic Myelopathy: A Case Series and Review of the Literature
Kurtz RM, Babatunde VD, Schmitt JE, Berger JR and Mohan S
Sarcoidosis is a multisystem granulomatous disease, with intramedullary spinal cord involvement seen in <1% of cases. This case series illustrates the clinical presentations and imaging findings of 5 patients with intramedullary spinal neurosarcoidosis occurring at sites of spondylotic spinal canal stenosis, which can be indistinguishable from spondylotic myelopathy with cord enhancement. Both entities are most common in middle-aged men and present with weeks to months of motor and sensory symptoms. On imaging, both can have focal spinal cord enhancement and longitudinally extensive signal abnormality centered at or just below the level of spinal canal stenosis. On the basis of our experience, we suggest that in patients with cord enhancement centered at or just below a site of spinal canal stenosis, consideration should be given to chest imaging and lymph node biopsy when applicable, to assess for the possibility of underlying sarcoidosis before surgical decompression.
Amebic infections of the central nervous system
Berger JR
The report of death of a person from amebic meningoencephalitis, the proverbial "brain-eating ameba," Naegleria fowleri, acquired in a state park lake in Iowa in July 2022 has once again raised the seasonal alarms about this pathogen. While exceptionally rare, its nearly universal fatality rate has panicked the public and made for good copy for the news media. This review will address free-living ameba that have been identified as causing CNS invasion in man, namely, Naegleria fowleri, Acanthamoeba species, Balamuthia mandrillaris, and Sappinia diploidea (Table 1). Of note, several Acanthamoeba spp. and Balamuthia mandrillaris may also be associated with localized extra-CNS infections in individuals who are immunocompetent and disseminated disease in immunocompromised hosts. These ameba are unique from other protozoa in that they are free-living, have no known insect vector, do not result in a human carrier state, and are typically unassociated with poor sanitation. Table 1 Free-living ameba that have been identified as causing CNS invasion in man, namely, Naegleria fowleri, Acanthamoeba species, Balamuthia mandrillaris, and Sappinia diploidea Entity Pathogenic ameba Predisposing disorders Portal of entry Incubation period Clinical features Radiographic findings CSF finding Diagnostic measures Primary amebic meningoencephalitis Naegleria fowleri; N. australiensis; N. italica Previously healthy children or young adults Olfactory epithelium 2-14 days (average 5 days) Headache, fever, altered mental status, meningeal signs; seizures Brain edema; meningeal enhancement; hydrocephalus; basal ganglia infarctions Increased opening pressure; neutrophilic pleocytosis (~ 1000 cells/cu mm); low glucose Brain biopsy, CSF wet prep, IIF culture or PCR Granulomatous amebic encephalitis Acanthamoeba spp.; Balamuthia mandrillaris; Sappinia diploidea Typically, immunocompromised individual Skin sinuses; olfactory epithelium respiratory tract Weeks to months Headache; altered mental status seizures, focal neurological findings Focal parenchymal lesions with edema; hemorrhagic infarctions; meningeal enhancement Generally, LP contraindicated; when performed lymphocytic pleocytosis; increased protein; low glucose Brain biopsy, CSF culture, wet prep, IIF, or PCR IIF indirect immunofluorescence, LP lumbar puncture, PCR polymerase chain reaction.
Multifocal neutrophilic meningoencephalitis: a novel disorder responsive to anakinra
Berger JR, Markowitz C, Merkel PA, Kolster RA and Mourelatos Z
We report a 57-year-old man with recurrent meningoencephalitis resulting in bouts of altered consciousness, encephalopathy, tremors, focal seizures, and paraparesis. The neurological manifestations were accompanied by fever and leukocytosis in the absence of other systemic manifestations. MRI abnormalities of the brain, brainstem, spinal cord and meninges and CSF pleocytosis and elevated protein were observed. Exhaustive studies failed to reveal an etiology. Brain biopsy revealed nodules of neutrophils and macrophages, but no vasculitis. The lesions were not vasocentric as would be expected with neuro-Behcet's disease and neuro-Sweet's disease. The disorder was responsive to high-dose corticosteroid therapy and, ultimately, to anakinra, an IL-1α and IL-1β receptor antagonist.