CANCER BIOLOGY & THERAPY

The polymeric fluoropyrimidine CF10 overcomes limitations of 5-FU in pancreatic ductal adenocarcinoma cells through increased replication stress
Finan JM, Di Niro R, Park SY, Jeong KJ, Hedberg MD, Smith A, McCarthy GA, Haber AO, Muschler J, Sears RC, Mills GB, Gmeiner WH and Brody JR
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease soon to become the second leading cause of cancer deaths in the US. Beside surgery, current therapies have narrow clinical benefits with systemic toxicities. FOLFIRINOX is the current standard of care, one component of which is 5- Fluorouracil (5-FU), which causes serious gastrointestinal and hematopoietic toxicities and is vulnerable to resistance mechanisms. Recently, we have developed polymeric fluoropyrimidines (F10, CF10) which unlike 5-FU, are, in principle, completely converted to the thymidylate synthase inhibitory metabolite FdUMP, without generating appreciable levels of ribonucleotides that cause systemic toxicities while displaying much stronger anti-cancer activity. Here, we confirm the potency of CF10 and investigate enhancement of its efficacy through combination with inhibitors in vitro targeting replication stress, a hallmark of PDAC cells. CF10 is 308-times more potent as a single agent than 5-FU and was effective in the nM range in primary patient derived models. Further, we find that activity of CF10, but not 5-FU, is enhanced through combination with inhibitors of ATR and Wee1 that regulate the S and G2 DNA damage checkpoints and can be reversed by addition of dNTPs indicative of CF10 acting, at least in part, through inducing replication stress. Our results indicate CF10 has the potential to supersede the established benefit of 5-FU in PDAC treatment and indicate novel combination approaches that should be validated in vivo and may be beneficial in established regimens that include 5-FU.
Extracellular vesicle-packaged miR-4253 secreted by cancer-associated fibroblasts facilitates cell proliferation in gastric cancer by inducing macrophage M2 polarization
Duan X, Yu X and Gan J
Cancer-associated fibroblasts (CAFs) can interact with macrophages in the tumor microenvironment by secreting extracellular vesicles (EVs), thereby affecting tumor progression. However, the mechanisms of CAF-secreted EVs in gastric cancer (GC) remain not well understood. Here, we investigated the effect of CAF-EVs on macrophage polarization in GC and the underlying mechanisms. Macrophage polarization was evaluated using flow cytometry and quantitative real-time polymerase chain reaction. GC cell proliferation was determined using cell counting kit-8, EdU, and colony formation assays. The molecular mechanism was explored using microarray analysis, dual-luciferase reporter assay, and RNA pull-down analysis. The results showed that CAFs secreted EVs that inhibit macrophage M1 polarization and promote M2 polarization. Moreover, miR-4253 expression was increased in CAF-EVs, and inhibition of miR-4253 reversed the macrophage polarization induced by EVs. IL6R was identified as the target of miR-4253. Additionally, macrophages treated with EVs that encapsulated miR-4253 promote GC cell proliferation. In conclusion, CAF-secreted EVs packaging miR-4253 facilitate macrophage polarization from M1 to M2 phenotype by targeting IL6R, thereby accelerating GC cell proliferation. The findings suggest that EV-encapsulated miR-4253 may be a promising therapeutic target of GC.
A positive feedback loop of SRSF9/USP22/ZEB1 promotes the progression of ovarian cancer
Wang J, Hu M, Min J and Li X
Ovarian cancer (OC) is recognized as the most lethal type of gynecological malignancy, making treatment options challenging. Discovering novel therapeutic targets will benefit OC patients. This study aimed to reveal the mechanism by which SRSF9 regulates OC progression. Cell proliferation was determined via CCK-8 assays, whereas cell migration and invasion were monitored via Transwell assays. Western blotting and qPCR assays were used to detect protein and mRNA alterations. RNA pull-down, RNA immunoprecipitation (RIP), and actinomycin D experiments were performed to investigate the relationships between SRSF9 and USP22. Co-IP was used to validate the interaction between USP22 and ZEB1. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were used to verify the regulatory effect of ZEB1 on the transcription of SRSF9. Subcutaneous xenograft models were established to evaluate the impact of SRSF9 on tumor development. Knockdown of SRSF9 significantly suppressed the proliferation, invasion, migration, tumorigenicity, and epithelial‒mesenchymal transition (EMT) of OC cells. SRSF9 can bind to USP22 mRNA, increasing its stability. Moreover, the overexpression of USP22 reversed the impact of SRSF9 silencing on malignant phenotypes. USP22 can mediate the deubiquitination of ZEB1, thereby enhancing the progression of OC. Furthermore, ZEB1 upregulated SRSF9 expression through transcriptional activation, thus establishing a positive feedback loop. SRSF9 enhanced the malignant characteristics of OC through a positive feedback loop of SRSF9/USP22/ZEB1. This functional circuit may help in the development of novel therapeutic approaches for treating OC.
Cyclophilin A: promising target in cancer therapy
Jin S, Zhang M and Qiao X
Cyclophilin A (CypA), a member of the immunophilin family, stands out as the most prevalent among the cyclophilins found in humans. Beyond serving as the intracellular receptor for the immunosuppressive drug cyclosporine A (CsA), CypA exerts critical functions within the cell via its () activity, which is crucial for processes, such as protein folding, trafficking, assembly, modulation of immune responses, and cell signaling. Increasing evidence indicates that CypA is up-regulated in a variety of human cancers and it may be a novel potential therapeutic target for cancer treatment. Therefore, gaining a thorough understanding of CypA's contribution to cancer could yield fresh perspectives and inform the development of innovative therapeutic approaches. This review delves into the multifaceted roles of CypA in cancer biology and explores the therapeutic potential of targeting CypA.
NRF3 suppresses the malignant progression of TNBC by promoting M1 polarization of macrophages via ROS/HMGB1 axis
Xing P, Chen Z, Zhu W, Lin B and Quan M
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Due to its lack of targeted therapy options, TNBC remains a significant clinical challenge. In this study, we investigated the role of nuclear respiratory factor 3 (NRF3) and high-mobility group box 1 (HMGB1) in the progression of TNBC.
LCP1 promotes ovarian cancer cell resistance to olaparib by activating the JAK2/STAT3 signalling pathway
Gai M, Zhao L, Li H, Jin G, Li W, Wang F and Liu M
Resistance to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) remain a major challenge in ovarian cancer (OC) treatment. However, the underlying mechanism of PARPi resistance is still poorly characterized. Increasing evidence has proven that lymphocyte cytosolic protein 1 (LCP1) promotes tumor progression. The JAK2/STAT3 signaling pathway plays an important role in increasing tumor metastatic ability and chemoresistance in cancer by promoting epithelial - mesenchymal transition (EMT).
and as potential prognostic and therapeutic targets for adrenocortical carcinoma
Situ Y, Deng L, Huang Z, Jiang X, Zhao L, Zhang J, Lu L, Liang Q, Xu Q, Shao Z and Liang M
Cadherin 2 (CDH2, N-cadherin) and cadherin 13 (CDH13, T-cadherin, H-cadherin) affect the progress and prognoses of many cancers. However, their roles in adrenocortical carcinoma (ACC), a rare endocrine cancer, remain unclear. To decipher the roles of these proteins in ACC and to identify their regulatory targets, we analyzed their expression levels, gene regulatory networks, prognostic value, and targets in ACC, using various bioinformatic analyses. was strongly downregulated and was strongly upregulated in patients with ACC; the expression levels of these genes affected the prognosis. In 75 patients, the expression of and was altered by 8% and 5%, respectively. and , as well as their neighboring genes, were predicted to form a complex network of interactions, mainly through coexpression and physical and genetic interactions. and its altered neighboring genes (ANGs) mainly affect tumor-related gene expression, cell cycle, and energy metabolism. The regulation of tumor-related integrin function, gene transcription, metabolism, and amide and phospholipid metabolism are the main functions of and its ANGs. MiRNA and kinase targets of and in ACC were identified. expression in patients with ACC was positively associated with immune cell infiltration. Anti-PD1/CTLA-4/PD-L1 immunotherapy significantly downregulated the expression of in patients with ACC. Foretinib and elesclomol were predicted to exert strong inhibitory effects on SW13 cells by inhibiting the expression of and . These data indicate that CDH2 and CDH13 are promising targets for precise treatment of ACC and may serve as new biomarkers for ACC prognosis.
S-1-based concurrent chemoradiotherapy plus nimotuzumab in patients with locally advanced esophageal squamous cell carcinoma who failed neoadjuvant therapy: a real-world prospective study
Wang X, Feng G, Yang X, Yu N, Zheng Z, Li J, Kang X, Chen X, Zhang R, Li Y, Wang Z, Deng L, Zhang T, Liu W, Wang J, Wang W, Feng Q, Xiao Z, Zhou Z, Bi N, Li Y and Qin J
This prospective study in a real-world setting investigated the feasibility and safety of S-1 plus nimotuzumab (S-1-Nimo) based concurrent chemoradiotherapy (CCRT) in locally advanced esophageal squamous cell carcinoma (LA-ESCC) patients who failed to neoadjuvant chemotherapy or chemoimmunotherapy.
may predict poor prognosis of lower-grade glioma patients and be a potential target for immunotherapy
Jia Y, Liu M, Liu H, Liang W, Zhu Q, Wang C, Chen Y, Gao Y, Liu Z and Cheng X
DSN1 has been previously found to be positively correlated with various cancers. However, the effect of DSN1 or its methylation on the prognosis, molecular characteristics, and immune cell infiltration of low-grade glioma (LGG) has not yet been studied. We obtained 1046 LGG samples from the The Cancer Genome Atlas, The Chinese Glioma Genome Atlas (CGGA) microarray, and CGGA RNA-Seq databases. Bioinformatic methods (gene set enrichment analysis (GSEA), chi-square test, multivariate), and laboratory validation were used to investigate DSN1 in LGG. The expression levels of DSN1 mRNA and protein in LGG were substantially higher than those in normal brain tissue, and their expression was negatively regulated by methylation. The survival time of patients with low expression of DSN1 and cg12601032 hypermethylation was considerably prolonged. DSN1 was a risk factor, and of good diagnostic and prognostic value for LGG. Importantly, the expression of DSN1 is related to many types of tumor-infiltrating immune cells and has a positive correlation with PDL1. DSN1 promoted the activation of multiple cancer-related pathways, such as the cell cycle. Additionally, knockdown of DSN1 substantially inhibited the proliferation and invasion of LGG cells. To the best of our knowledge, this study is the first comprehensive analysis of the mechanism of DSN1 leading to poor prognosis of LGG, which provides a new perspective for revealing the pathogenesis of LGG. DSN1 or its methylation has diagnostic value for the prognosis of glioma, and may become a new biological target of anti-tumor immunotherapy.
Tumor microenvironment in primary central nervous system lymphoma (PCNSL)
Jin Q, Jiang H, Han Y, Zhang L, Li C, Zhang Y, Chai Y, Zeng P, Yue L and Wu C
Primary central nervous system lymphoma (PCNSL) is one of the rare lymphomas limited to the central nervous system. With the availability of immunotherapy, the tumor microenvironment (TME) attracts much attention nowadays. However, the systematic studies on the TME of PCNSL are lacking. By reviewing the existing research, we found that the TME of PCNSL is infiltrated with abundant TAMs and TILs, among which cytotoxic T cells (CTLs) and M2-polarized macrophages are principal. However, the counts of immune cells infiltrated in the TME of PCNSL are significantly lower than systemic diffuse large B-cell lymphoma (DLBCL). In addition, PCNSL can attract the infiltration of immunosuppressive cells and the loss of HLA I/II expression, overexpress inhibitory immune checkpoints, and release immunosuppressive cytokines to form an immunosuppressive TME. The immunosuppressive effect of TME in PCNSL is significantly stronger than that in systemic DLBCL. These characteristics of TME highlight the immunosuppression of PCNSL.
PDLIM1, a novel miR-3940-5p target, regulates the malignant progression of diffuse large B-cell lymphoma
Zhu J, Xiao H, Li C, Li X, Zheng J, Yao X, Wang S and Zhu X
PDZ And LIM domain protein 1 (PDLIM1), a protein-coding gene, has been widely reported to exhibit differential expression patterns across various human cancers, including hematological malignancies. This study aimed to investigate PDLIM1 expression pattern and its functional role in diffuse large B-cell lymphoma (DLBCL) both and .
NAALADL2-AS2 functions as a competing endogenous RNA to regulate apoptosis and drug resistance in DLBCL
Xu X, Liu J, Fang C, Deng X, Zhu D, Jiang J and Wu C
To explore role of NAALADL2-AS2 as ceRNA in DLBCL. Fluorescence in situ hybridization was used to determine location of NAALADL2-AS2 in cells and to verify its expression in DLBCL tissues. The miRNAs interacting with NAALADL2-AS2 and related regulatory genes were identified by small interfering RNA (siRNA) assay, luciferase reporter assay, fluorescent quantitative polymerase chain reaction, western blotting. DLBCL cells transfected with NAALADL2-AS2 siRNA or control siRNA were treated with doxorubicin, rituximab at different concentrations alone or in combination. The growth curves, drug sensitivity changes of cells before and after transfection were detected by MTT assay, ATP-TCA drug sensitivity test. Cell proliferation was detected by BrdU cell proliferation assay, and apoptosis was detected by Annexin V-fluorescein isothiocyanate/propidium iodide staining. The effects and mechanisms of NAALADL2-AS2 on proliferation, apoptosis, drug resistance of DLBCL cells were studied at cellular level. We confirmed expression of NAALADL2-AS2 in both cytoplasm and nuclei of DLBCL cells. Additionally, we observed elevated levels of NAALADL2-AS2 in DLBCL tissues. We discovered that NAALADL2-AS2 functions as ceRNA to inhibit expression of miR-34a, miR-125a, whereas overexpression of NAALADL2-AS2 indirectly upregulates expression of BCL-2. Interfering with NAALADL2-AS2 promoted apoptosis in DLBCL cells, resulting in approximately a 40% increase in sensitivity to doxorubicin and rituximab. In vivo experiments further confirmed that targeting NAALADL2-AS2 effectively suppressed tumor growth, leading to upregulation of miR-34a and miR-125a, downregulation of BCL-2, and enhanced apoptosis in DLBCL cells, which significantly improved their sensitivity to doxorubicin and rituximab by approximately 50%. These results indicate that NAALADL2-AS2/miR-34a, miR-125a/BCL-2 networks hold promise as therapeutic targets for treatment of DLBCL.
Liu-Shen-Wan inhibits PI3K/Akt and TRPV1 signaling alleviating bone cancer pain in rats
Zhang H, Jiang J, Chen X, Zhu F, Fu F, Chen A, Fu L and Mao D
Patients with advanced-stage cancers often suffer from severe pain caused by bone metastasis and destruction, for which effective treatment options are limited. Liu-Shen-Wan (LSW) is a widely recognized herbal formula utilized for pain relief. This study aims to elucidate the effects of LSW on bone cancer pain (BCP). In this study, the pharmacology of LSW on BCP was screened by network pharmacology. A BCP model was conducted using Walker 256 cells. Paw withdrawal threshold and paw withdrawal latency were employed as measures to assess the pain threshold in rats. The pathways and cell types of LSW against BCP were explored. Next, the impact of LSW on Walker 256 cells was evaluated, and UPLC-MS was utilized to identify the active ingredients of LSW. Furthermore, the effects of the key active ingredient, Bufalin, on the BCP rats were evaluated. There were 275 shared targets between LSW and BCP, which were enriched in neural tissue ligand-receptor interaction pathway. LSW increased pain threshold and decreased inflammatory cytokines levels in BCP rats by inhibiting PI3K/Akt and transient receptor potential vanilloid 1 (TRPV1) signaling through astrocytes and microglia. LY294002 further alleviated BCP in rats, while the effects were reversed after treatment with insulin-like growth factor 1 (IGF-1). Both LSW and its active ingredient Bufalin were shown to inhibit the viability and migration of Walker 256 cells and induce apoptosis. Bufalin appears to be the key active ingredient of LSW and exerts its pain-relieving effects by suppressing PI3K/Akt and TRPV1 signaling in BCP.
TM4SF4 is a diagnostic biomarker accelerating progression of papillary thyroid cancer via AKT pathway
Lin L, Wen J, Xu T and Si Y
The incidence of papillary thyroid cancer (PTC) has been steadily rising, though the underlying mechanism remains unclear. This study aims to elucidate the biological role of TM4SF4 in the PTC progression. Our differential expression analysis indicated that TM4SF4 was significantly upregulated in PTC, which was corroborated in both our local cohort and the data from Human Protein Atlas. Additionally, clinical characteristics analysis and receiver operating characteristic curves (ROC) demonstrated that TM4SF4 served as a significant diagnostic marker for PTC. Correlation and enrichment analysis of TM4SF4-related partners suggested that it was involved in cell junction and cohesion processes. Furthermore, immune infiltration analysis revealed a positive correlation between TM4SF4 expression and the immune activation in PTC. Importantly, experiments demonstrated that TM4SF4 downregulation suppressed the proliferation and metastasis of PTC cell lines while inducing apoptosis. We further discovered that the AKT activator SC79 was able to reverse the malignant behaviors suppression caused by TM4SF4 knockdown, suggesting that TM4SF4 may promote PTC progression via the AKT pathway. In conclusion, our study highlights the oncogenic role of TM4SF4 in PTC and identifies it as a novel biomarker for diagnosis and treatment.
SHR-1806, a robust OX40 agonist to promote T cell-mediated antitumor immunity
Zhang J, Zhou L, Sun X, Lin Y, Yuan J, Yang C and Liao C
Anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have significantly revolutionized cancer immunotherapy. However, the persistent challenge of low patient response rates necessitates novel approaches to overcome immune tolerance. Targeting immunostimulatory signaling may have a better chance of success for its ability to enhance effector T cell (Teff) function and expansion for antitumor immunity. Among various immunostimulatory pathways, the evidence underscores the potential of activating OX40-OX40L signaling to enhance CD8 T cell generation and maintenance while suppressing regulatory T cells (Tregs) within the tumor microenvironment (TME). In this study, we introduce a potent agonistic anti-OX40 antibody, SHR-1806, designed to target OX40 receptors on activated T cells and amplify antitumor immune responses. SHR-1806 demonstrates a high affinity and specificity for human OX40 protein, eliciting FcγR-mediated agonistic effects, T cell activation, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activities . In human OX40 knock-in mice bearing MC38 tumor, SHR-1806 shows a trend toward a higher potency than the reference anti-OX40 antibody produced in-house, GPX4, an analog of pogalizumab, the most advanced drug candidate developed by Roche. Furthermore, SHR-1806 displays promising anti-tumor activity alone or in combination with toll-like receptor 7 (TLR7) agonist or PD-L1 inhibitor in mouse models. Evaluation of SHR-1806 in rhesus monkeys indicates a favorable safety profile and typical pharmacokinetic characteristics. Thus, SHR-1806 emerges as a robust OX40 agonist with promising therapeutic potential.
GdX inhibits the occurrence and progression of breast cancer by negatively modulating the activity of STAT3
Chen Z, Xu L, Lin S, Huang H, Long Q and Liu J
To elucidate the biological functionality and regulatory mechanisms of GdX in breast cancer (BC).
The tubulin polymerization inhibitor gambogenic acid induces myelodysplastic syndrome cell apoptosis through upregulation of Fas expression mediated by the NF-κB signaling pathway
Zhong C, Wang S, Xia L, Yang X, Fang L, Zhang X, Wang M, Zhao H, Wang G, Wu J, Guo R, Zhong M and Gohda E
The development of an effective treatment for myelodysplastic syndrome (MDS) is needed due to the insufficient efficacy of current therapies. Gambogenic acid (GNA) is a xanthone constituent of gamboge, a resin secreted by Hook. f. GNA exhibits antitumor and apoptosis-inducing activities against some cancer cells, but the mechanism is unknown. This study aimed to validate the anti-proliferative and apoptosis-inducing effects of GNA on MDS cells and to elucidate the mechanisms underlying those activities. Apoptosis, proliferation and cell cycle of MDS-L cells were assessed by the caspase 3/7 assay, cell counting and flow cytometry, respectively. The levels of apoptotic, tubulin, NF-κB pathways, and Fas proteins were determined by Western blotting. CRISPR/Cas9 knockout (KO) plasmids were used to generate KO cells of p65 and Fas. MDS cell growth in a xenograft model was evaluated by the AkaBLI system. GNA induced MDS cell apoptosis, accompanied by a reduction in the anti-apoptotic protein MCL-1 expression, and inhibited their growth in vitro and in vivo. GNA combined with the MCL-1 inhibitor MIK665 potently suppressed the proliferation of MDS cells. GNA interfered with tubulin polymerization, resulting in G2/M arrest. GNA induced NF-κB activation and upregulation of Fas, the latter of which was inhibited by p65 KO. GNA-induced apoptosis was attenuated in either p65 KO or Fas KO cells. These results demonstrate that GNA inhibited tubulin polymerization and induced apoptosis of MDS cells through upregulation of Fas expression mediated by the NF-κB signaling pathway, suggesting a chemotherapeutic strategy for MDS by microtubule dynamics disruption.
DLAT promotes triple-negative breast cancer progression via YAP1 activation
Liu D, Wang X, Qian F, Ye D, Deng X and Fang L
Breast cancer (BC) is the most prevalent malignant tumor in women globally. Triple-negative breast cancer (TNBC) represents the most malignant and invasive subtype of BC. New therapeutic targets are urgently needed for TNBC owing to its receptor expression characteristics, which render it insensitive to traditional targeted and endocrine therapies for BC. The role and mechanisms of dihydrolipoamide S-acetyltransferase (DLAT) as a crucial molecule in glycometabolism and cuproptosis-related biological processes in tumors remain to be explored.
Tripartite motif-containing protein 50 suppresses triple-negative breast cancer progression by regulating the epithelial-mesenchymal transition
Chen D, Jiang J, Zhang W, Li X, Ge Q, Liu X and Li X
Tripartite motif-containing protein 50 (TRIM50) is a recently discovered E3 ubiquitin ligase that participates in tumor progression. TRIM50 is overexpressed in many cancers, although few studies focused on TRIM50's role in breast cancer.
FASN contributes to ADM resistance of diffuse large B-cell lymphoma by inhibiting ferroptosis via nf-κB/STAT3/GPX4 axis
Zhong X, Zhang W, Zhang W, Yu N, Li W and Song X
Drug resistance is a critical impediment to efficient therapy of diffuse large B-cell lymphoma (DLBCL) patients. Recent studies have highlighted the association between ferroptosis and drug resistance that has been reported. Fatty acid synthase (FASN) is always related to a poor prognosis. In this study, we investigate the impact of FASN on drug resistance in DLBCL and explore its potential modulation of ferroptosis mechanisms. The clinical correlation of FASN mRNA expression was first analyzed to confirm the role of FASN on drug resistance in DLBCL based on the TCGA database. Next, the impact of FASN on ferroptosis was investigated in vitro and in vivo. Furthermore, a combination of RNA-seq, western blot, luciferase reporter, and ChIP experiments was employed to elucidate the underlying mechanism. The prognosis for patients with DLBCL was worse when FASN was highly expressed, particularly in those undergoing chemotherapy for Adriamycin (ADM). FASN promoted tumor growth and resistance of DLBCL to ADM, both in vitro and in vivo. It is noteworthy that this effect was achieved by inhibiting ferroptosis, since Fer-1 (a ferroptosis inhibitor) treatment significantly recovered the effects of silencing FASN on inhibiting ferroptosis, while Erastin (a ferroptosis inducer) treatment attenuated the impact of overexpressing FASN. Mechanistically, FASN activated NF-κB/STAT3 signaling pathway through phosphorylating the upstream IKKα and IκBα, and the activated STAT3 promoted GPX4 expression by directly binding to GPX4 promoter. FASN inhibits ferroptosis in DLBCL via NF-κB/STAT3/GPX4 signaling pathway, indicating its critical role in mediating ADM resistance of DLBCL.
Evaluating massage therapy for radiation-induced fibrosis in rats: preliminary findings and palpation results
Bove GM, McMillan H and Barbe MF
Radiation-induced fibrosis (RIF) is a common side effect of cancer treatment, but can manifest into a devastating syndrome for which there is no preventive measure or cure. In rats who perform a repetitive work task, who left untreated develop signs and symptoms that resemble repetitive motion disorders in humans, we have shown that manual therapy prevents the development of fibrosis and other key biomarkers. The fibrosis of RIF and repetitive motion disorders has similar biomarkers. In rats, we sought to determine if manual therapy would alter key biomarkers of post-irradiation fibrosis following X-ray irradiation given to the rat forelimb. One limb of rats was given a damaging dose of X-ray irradiation. Some limbs were massaged using a protocol previously described and characterized. Serum inflammatory markers, histological assays of tissue fibrosis and nerve pathology, and electrophysiology for neuropathic discharge were assayed after 8 weeks. We also tested if an experienced therapist could identify the irradiated limb using blinded palpation at the 8 week end-point. While preliminary assays showed robust changes compared to control limbs, the other assays did not show similar pathology. Our therapist could detect each irradiated limb. Serum inflammatory markers were reduced by massage to the irradiated limb. We conclude that blinded palpation is sensitive to detect subtle changes in tissue following irradiation. In contrast to the preliminary studies, the dose of irradiation used was insufficient to induce long-lasting deep fibrosis or nerve degeneration. We suspect that a difference in housing, and thus physical activity, was the plausible reason for this difference.