INTERNATIONAL BIODETERIORATION & BIODEGRADATION

Bats, monkeys and plants in the time of Covid-19 pandemic at Angkor monuments
Gu JD and Katayama Y
Knowledge of biodeterioration and protection of cultural heritage depends on the scientific understanding of the substratum materials, the ambient environment, the fauna and flora including the microorganisms so an overall picture can be constructed to serve as a basis for protection and management. Over the past more than 20 years of survey and research, an accumulated dataset is available on the mechanisms on the (bio)deterioration of stone monuments in Cambodia, involving interactions among water cycling and salt dynamics with the presence of a rich surface microbiome, the biofilms. However, during the Covid-19 period (2020-2022), because of a drastic drop on tourist population, the number of bats and monkeys are on the rising, which have an impact on the on-going protection efforts. At the same time, large trees around and on the cultural heritage sites are being managed by trimming and removal to decrease the potential risk and negative impacts from them. The new management scheme needs scientific results for the long-term successful protection of these cultural heritage. A close examination of these issues is also meaningful and important to the research new initiatives and policy to be implemented not only in Cambodia but also elsewhere.
Silverfish (Zygentoma) in Austrian Museums before and during COVID-19 lockdown
Brimblecombe P and Querner P
The lockdowns that came with policies to reduce the spread of COVID-19 in 2020 required some 90% of museums and historic properties across the globe to be closed. Lowered visitor numbers and reduced staffing levels allowed a range of fauna to make their way indoors, bringing an increase in birds, rodents and insect pests. Silverfish are shy, so benefit from low occupancy in museums and present a potential vector for damage to books and paper. This study is the first to report changes in insect populations in museums and examines six years (2015-2020) trapping data for silverfish and similar insects (Lepismatidae): , , and from: (i) the Technisches Museum Wien, (ii) Schönbrunn Palace, (iii) Hofburg Museum and a shorter record from (iv) Weltmuseum Wien. Analysis of the trap contents gives an impression that the number of insects caught had increased over time, but 2020 was distinctive and gave typically higher insect numbers during the COVID-19 lockdown compared to other years, especially for . Individual traps caught up to 100 silverfish in only a few weeks. Because silverfish usually need between four months to one year to become mature, we assume that it was increased activity during museum closure and not higher reproduction which led to higher numbers. The parts of the museums showing increased populations under lockdown were similar to the areas where they were more frequent in earlier years. This means that such areas deserve continued monitoring even when the museum is closed. No damage to paper objects were reported in the museums investigated.
Zinc toxicity stimulates microbial production of extracellular polymers in a copiotrophic acid soil
Redmile-Gordon M and Chen L
The production of extracellular polymeric substances (EPS) is crucial for biofilm structure, microbial nutrition and proximal stability of habitat in a variety of environments. However, the production patterns of microbial EPS in soils as affected by heavy metal contamination remain uncertain. Here we investigate the extracellular response of the native microbial biomass in a grassland soil treated with refined glycerol or crude unrefined biodiesel co-product (BCP) with and without ZnCl. We extracted microbial EPS and more readily soluble microbial products (SMP), and quantified total polysaccharide, uronic acid, and protein content in these respective extracts. Organic addition, especially BCP, significantly stimulated the production of EPS-polysaccharide and protein but had no impact on EPS-uronic acids, while in the SMP-fraction, polysaccharides and uronic acids were both significantly increased. In response to the inclusion of Zn, both EPS- and SMP-polysaccharides increased. This implies firstly that a tolerance mechanism of soil microorganisms against Zn toxicity exists through the stimulation of SMP and EPS production, and secondly that co-products of biofuel industries may have value-added use in bioremediation efforts to support production of microbial biopolymers. Microbial films and mobile polymers are likely to impact a range of soil properties. The recent focus on EPS research in soils is anticipated to help contribute an improved understanding of biofilm dynamics in other complex systems - such as continuously operated bioreactors.
Potential for Polychlorinated Biphenyl Biodegradation in Sediments from Indiana Harbor and Ship Canal
Liang Y, Martinez A, Hornbuckle KC and Mattes TE
Polychlorinated biphenyls (PCBs) are carcinogenic, persistent, and bioaccumulative contaminants that pose risks to human and environmental health. In this study, we evaluated the PCB biodegradation of sediments from Indiana Harbor and Ship Canal (IHSC), a PCB-contaminated site (average PCB concentration = 12,570 ng/g d.w.). PCB congener profiles and bacterial community structure in a core sediment sample (4.57 m long) were characterized. Analysis of vertical PCB congener profile patterns in sediment and pore water strongly suggest that dechlorination occurred in sediments. However, 16S rRNA genes from putative PCB-dechlorinating were relatively more abundant in upper 2 m sediments, as were genes indicative of aerobic biodegradation potential (i.e. biphenyl dioxygenase ()). Characterization of the bacterial community by terminal restriction fragment length polymorphism and comparison of these with sediment and pore water PCB congener profiles with the Mantel test revealed a statistical correlation (p<0.001). Sequences classified as and were highly abundant in deep sediments. Overall, our results suggest that PCB dechlorination has already occurred, and that IHSC sediments have the potential for further aerobic and anaerobic PCB biodegradation.
Monitoring the effects of different conservation treatments on paper-infecting fungi
Michaelsen A, Pinzari F, Barbabietola N and Piñar G
Fungi are among the most degradative organisms inducing biodeterioration of paper-based items of cultural heritage. Appropriate conservation measures and restoration treatments to deal with fungal infections include mechanical, chemical, and biological methods, which entail effects on the paper itself and health hazards for humans. Three different conservation treatments, namely freeze-drying, gamma rays, and ethylene oxide fumigation, were compared and monitored to assess their short- (one month, T1) and long-term (one year, T2) effectiveness to inhibit fungal growth. After the inoculation with fungi possessing cellulose hydrolysis ability - , and - as single strains or as a mixture, different quality paper samples were treated and screened for fungal viability by culture-dependent and -independent techniques. Results derived from both strategies were contradictory. Both gamma irradiation and EtO fumigation showed full efficacy as disinfecting agents when evaluated with cultivation techniques. However, when using molecular analyses, the application of gamma rays showed a short-term reduction in DNA recovery and DNA fragmentation; the latter phenomenon was also observed in a minor degree in samples treated with freeze-drying. When RNA was used as an indicator of long-term fungal viability, differences in the RNA recovery from samples treated with freeze-drying or gamma rays could be observed in samples inoculated with the mixed culture. Only the treatment with ethylene oxide proved negative for both DNA and RNA recovery. Therefore, DNA fragmentation after an ethylene oxide treatment can hamper future paleogenetic and archaeological molecular studies on the objects.
Microscopic, chemical, and molecular-biological investigation of the decayed medieval stained window glasses of two Catalonian churches
Piñar G, Garcia-Valles M, Gimeno-Torrente D, Fernandez-Turiel JL, Ettenauer J and Sterflinger K
We investigated the decayed historical church window glasses of two Catalonian churches, both under Mediterranean climate. Glass surfaces were studied by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD). Their chemical composition was determined by wavelength-dispersive spectrometry (WDS) microprobe analysis. The biodiversity was investigated by molecular methods: DNA extraction from glass, amplification by PCR targeting the16S rRNA and ITS regions, and fingerprint analyses by denaturing gradient gel electrophoresis (DGGE). Clone libraries containing either PCR fragments of the bacterial 16S rDNA or the fungal ITS regions were screened by DGGE. Clone inserts were sequenced and compared with the EMBL database. Similarity values ranged from 89 to 100% to known bacteria and fungi. Biological activity in both sites was evidenced in the form of orange patinas, bio-pitting, and mineral precipitation. Analyses revealed complex bacterial communities consisting of members of the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Fungi showed less diversity than bacteria, and species of the genera and were dominant. The detected Actinobacteria and fungi may be responsible for the observed bio-pitting phenomenon. Moreover, some of the detected bacteria are known for their mineral precipitation capabilities. Sequence results also showed similarities with bacteria commonly found on deteriorated stone monuments, supporting the idea that medieval stained glass biodeterioration in the Mediterranean area shows a pattern comparable to that on stone.
Multiple degradation pathways of phenanthrene by C6
Gao S, Seo JS, Wang J, Keum YS, Li J and Li QX
strain C6, capable of utilizing phenanthrene as a sole source of carbon and energy, was isolated from creosote-contaminated sites at Hilo, Hawaii. Twenty-two metabolites of phenanthrene, covering from dihydrodiol to protocatechuic acid, were isolated and characterized. Phenanthrene was degraded via an initial dioxygenation on 1,2-, 3,4-, and 9,10-C, where the 3,4-dioxygenation and subsequent metabolisms were most dominant. The metabolic pathways were further branched by - and -cleavage of phenanthrenediols to produce 1-hydroxy-2-naphthoic acid, 2-hydroxy-1-naphthoic acid, and naphthalene-1,2-dicarboxylic acid. These intermediates were then transformed to naphthalene-1,2-diol. 1-Hydroxy-2-naphthoic acid was also degraded via a direct ring cleavage. Naphthalene-1,2-diol underwent primarily -cleavage to produce trans-2-carboxycinnamic acid and then to form phthalic acid, 4,5-dihydroxyphthalic acid and protocatechuic acid. Accumulation of salicylic acid in prolonged incubation indicated that a limited extent of -cleavage of naphthalene-1, 2-diol also occurred. This is the first study of detailed phenanthrene metabolic pathways by .
Mycobacterium aromativorans JS19b1(T) Degrades Phenanthrene through C-1,2, C-3,4 and C-9,10 Dioxygenation Pathways
Seo JS, Keum YS and Li QX
Mycobacterium aromativorans strain JS19b1(T) can utilize phenanthrene as a sole source of carbon and energy. Strain JS19b1(T) degrades phenanthrene through highly branched metabolic pathways, including dioxygenation on C-1,2, C-3,4 and C-9,10 positions and ring opening by both ortho- and meta-cleavage. The presence of novel metabolic pathways was confirmed by replacement cultivation using synthetic metabolite standards. The metabolites were isolated and identified by gas chromatography-mass spectrometry. Both ortho and meta-cleavage products of 1,2- and 3,4-dihydroxyphenanthrene were detected. Two ortho-cleavage products, 1-[(E)-2-carboxyvinyl]-2-naphthoic acid and 2-[(E)-2-carboxyvinyl]-1-napthoic acid were further metabolized to naphthalene-1,2-dicarboxylic acid and then to 1,2-dihydroxynaphthalene, which can also be produced from the meta-cleavage products hydroxynaphthoic acids. These results suggest that part of the branched pathways is merged into 1,2-dihydroxynaphthalene. The concentrations of the products from C-9,10 dioxygenation were higher than those from other pathways. C-9,10 dioxygenation of phenanthrene produced phthalic acid through decarboxylation and mono-/di-oxygenation. The diverse phenanthrene metabolic pathways in JS19b1(T) give a new insight of the bacterial degradation of polycyclic aromatic hydrocarbons.
PVC biodeterioration and DEHP leaching by DEHP-degrading bacteria
Latorre I, Hwang S, Sevillano M and Montalvo-Rodriguez R
Newly isolated, not previously reported, di-(2-ethylhexyl) phthalate (DEHP)-degraders were augmented to assess their role in polyvinyl chloride (PVC) shower curtain deterioration and DEHP leaching. The biofilms that developed on the surfaces of the bioaugmented shower curtains with Gram-positive strains LHM1 and LHM2 were thicker than those of the biostimulated and Gram-negative strain LHM3-augmented shower curtains. The first derivative thermogravimetric (DTG) peaks of the bioaugmented shower curtains with the Gram-positive bacteria were observed at ~287°C, whereas the control and Gram-negative strain LHM3-augmented shower curtains were detected at ~283°C. This slight delay in the first DTG peak temperature is indicative of lower plasticizer concentrations in the shower curtains that were bioaugmented with Gram positive bacteria. Despite bioaugmentation with DEHP-degraders, aqueous solutions of the bioaugmentation reactors were not DEHP-free due probably to the presence of co-solutes that must have supported microbial growth. Generally, the bioaugmented reactors with the Gram-positive strains LHM1 and LHM2 had greater aqueous DEHP concentrations in the first-half (<3 wk) of the biodeterioration experiment than the biostimulated and strain LHM3-augmented reactors. Therefore, strains LHM1 and LHM2 may play an important role in DEHP leaching to the environment and PVC biodeterioration.
Evaluation of dihydrooroidin as an antifouling additive in marine paint
Melander C, Moeller PD, Ballard TE, Richards JJ, Huigens RW and Cavanagh J
Methods used to deter biofouling of underwater structures and marine vessels present a serious environmental issue and are both problematic and costly for government and commercial marine vessels worldwide. Current antifouling methods include compounds that are toxic to aquatic wildlife and marine ecosystems. Dihydrooroidin (DHO) was shown to completely inhibit biofilms at 100 μM in a static biofilm inhibition assay giving precedence for the inhibition of other marine-biofilm-forming organisms. Herein we present DHO as an effective paint-based, non-cytotoxic, antifouling agent against marine biofouling processes in a marine mesocosm.
The role of microbial biofilms in deterioration of space station candidate materials
Gu JD, Roman M, Esselman T and Mitchell R
Formation of microbial biofilms on surfaces of a wide range of materials being considered as candidates for use on the International Space Station was investigated. The materials included a fibre-reinforced polymeric composite, an adhesive sealant, a polyimide insulation foam, teflon cable insulation, titanium, and an aliphatic polyurethane coating. They were exposed to a natural mixed population of bacteria under controlled conditions of temperature and relative humidity (RH). Biofilms formed on the surfaces of the materials at a wide range of temperatures and RHs. The biofilm population was dominated by Pseudomonas aeruginosa, Ochrobactrum anthropi, Alcaligenes denitrificans, Xanthomonas maltophila, and Vibrio harveyi. The biocide, diiodomethyl-p-tolyl sulfone, impregnated in the polyurethane coating, was ineffective against microbial colonization and growth. Degradation of the polyurethane coatings was monitored with electrochemical impedance spectroscopy (EIS). The impedance spectra indicated that microbial degradation of the coating occurred in several stages. The initial decreases in impedance were due to the transport of water and solutes into the polymeric matrices. Further decreases were a result of polymer degradation by microorganisms. Our data showed that these candidate materials for space application are susceptible to biofilm formation and subsequent degradation. Our study suggests that candidate materials for use in space missions need to be carefully evaluated for their susceptibility to microbial biofilm formation and biodegradation.
Fungal Microbiomes Associated with Green and Non-Green Building Materials
Coombs K, Vesper S, Green BJ, Yermakov M and Reponen T
Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but spp. dominated the non-green composite board. In contrast, spp. dominated green and non-green flooring samples. Green gypsum board was dominated by spp. and spp., but non-green gypsum board by spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks.