The impact of blood viscosity modeling on computational fluid dynamic simulations of pediatric patients with Fontan circulation
For univentricular heart patients, the Fontan circulation presents a unique pathophysiology due to chronic non-pulsatile low-shear-rate pulmonary blood flow, where non-Newtonian effects are likely substantial. This study evaluates the influence of non-Newtonian behavior of blood on fluid dynamics and energetic efficiency in pediatric patient-specific models of the Fontan circulation. We used immersed boundary-lattice Boltzmann method simulations to compare Newtonian and non-Newtonian viscosity models. The study included models from twenty patients exhibiting a low cardiac output state (cardiac index of 2 L/min/m). We quantified metrics of energy loss (indexed power loss and viscous dissipation), non-Newtonian importance factors, and hepatic flow distribution. We observed significant differences in flow structure between Newtonian and non-Newtonian models. Specifically, the non-Newtonian simulations demonstrated significantly higher local and average viscosity, corresponding to a higher non-Newtonian importance factor and larger energy loss. Hepatic flow distribution was also significantly different in a subset of patients. These findings suggest that non-Newtonian behavior contributes to flow structure and energetic inefficiency in the low cardiac output state of the Fontan circulation.
Investigation of models to estimate flight performance of gliding birds from wakes
Mathematical models based on inviscid flow theory are effective at predicting the aerodynamic forces on large-scale aircraft. Avian flight, however, is characterized by smaller sizes, slower speeds, and increased influence of viscous effects associated with lower Reynolds numbers. Therefore, inviscid mathematical models of avian flight should be used with caution. The assumptions used in such models, such as thin wings and streamlined bodies, may be violated by birds, potentially introducing additional error. To investigate the applicability of the existing models to calculate the aerodynamic performance of bird flight, we compared predictions using simulated wakes with those calculated directly from forces on the bird surface, both derived from computational fluid dynamics of a high-fidelity barn owl geometry in free gliding flight. Two lift models and two drag models are assessed. We show that the generalized Kutta-Joukowski model, corrected by the streamwise velocity, can predict not only the lift but also span loading well. Drag was predicted best by a drag model based on the conservation of fluid momentum in a control volume. Finally, we estimated force production for three raptor species across nine gliding flights by applying the best lift model to wake flow fields measured with particle tracking velocimetry.
Deciphering viscoelastic cell manipulation in rectangular microchannels
Viscoelastic focusing has emerged as a promising method for label-free and passive manipulation of micro and nanoscale bioparticles. However, the design of microfluidic devices for viscoelastic particle focusing requires a thorough comprehensive understanding of the flow condition and operational parameters that lead to the desired behavior of microparticles. While recent advancements have been made, viscoelastic focusing is not fully understood, particularly in straight microchannels with rectangular cross sections. In this work, we delve into inertial, elastic, and viscoelastic focusing of biological cells in rectangular cross-section microchannels. By systematically varying degrees of fluid elasticity and inertia, we investigate the underlying mechanisms behind cell focusing. Our approach involves injecting cells into devices with a fixed, non-unity aspect ratio and capturing their images from two orientations, enabling the extrapolation of cross-sectional equilibrium positions from two dimensional (2D) projections. We characterized the changes in hydrodynamic focusing behaviors of cells based on factors, such as cell size, flow rate, and fluid characteristics. These findings provide insights into the flow characteristics driving changes in equilibrium positions. Furthermore, they indicate that viscoelastic focusing can enhance the detection accuracy in flow cytometry and the sorting resolution for size-based particle sorting applications. By contributing to the advancement of understanding viscoelastic focusing in rectangular microchannels, this work provides valuable insight and design guidelines for the development of devices that harness viscoelastic focusing. The knowledge gained from this study can aid in the advancement of viscoelastic particle manipulation technique and their application in various fields.
Enhanced capillary pumping using open-channel capillary trees with integrated paper pads
The search for efficient capillary pumping has led to two main directions for investigation: first, assembly of capillary channels to provide high capillary pressures, and second, imbibition in absorbing fibers or paper pads. In the case of open microfluidics (i.e., channels where the top boundary of the fluid is in contact with air instead of a solid wall), the coupling between capillary channels and paper pads unites the two approaches and provides enhanced capillary pumping. In this work, we investigate the coupling of capillary trees-networks of channels mimicking the branches of a tree-with paper pads placed at the extremities of the channels, mimicking the small capillary networks of leaves. It is shown that high velocities and flow rates (7 mm/s or 13.1 l/s) for more than 30 s using 50% (v/v) isopropyl alcohol, which has a 3-fold increase in viscosity in comparison to water; 6.5 mm/s or 12.1 l/s for more than 55 s with pentanol, which has a 3.75-fold increase in viscosity in comparison to water; and >3.5 mm/s or 6.5 l/s for more than 150 s with nonanol, which has a 11-fold increase in viscosity in comparison to water, can be reached in the root channel, enabling higher sustained flow rates than that of capillary trees alone.
The role of conventional and unconventional adaptive routes in lowering of intraocular pressure: Theoretical model and simulation
In this article, we propose a theoretical model leveraging the analogy between fluid and electric variables to investigate the relation among aqueous humor (AH) circulation and drainage and intraocular pressure (IOP), the principal established risk factor of severe neuropathologies of the optic nerve such as glaucoma. IOP is the steady-state result of the balance among AH secretion (AHs), circulation (AHc), and drainage (AHd). AHs are modeled as a given volumetric flow rate electrically corresponding to an input current source. AHc is modeled by the series of two linear hydraulic conductances (HCs) representing the posterior and anterior chambers. AHd is modeled by the parallel of three HCs: a linear HC for the conventional adaptive route (ConvAR), a nonlinear HC for the hydraulic component of the unconventional adaptive route (UncAR), and a nonlinear HC for the drug-dependent component of the UncAR. The proposed model is implemented in a computational virtual laboratory to study the value attained by the IOP under physiological and pathological conditions. Simulation results () confirm the conjecture that the UncAR acts as a relief valve under pathological conditions, () indicate that the drug-dependent AR is the major opponent to IOP increase in the case of elevated trabecular meshwork resistance, and () support the use of the model as a quantitative tool to complement studies and help design and optimize medications for ocular diseases.
Near-surface wind variability over spatiotemporal scales relevant to plume tracking insects
Odor plume tracking is important for many organisms, and flying insects have served as popular model systems for studying this behavior both in field and laboratory settings. The shape and statistics of the airborne odor plumes that insects follow are largely governed by the wind that advects them. Prior atmospheric studies have investigated aspects of microscale wind patterns with an emphasis on characterizing pollution dispersion, enhancing weather prediction models, and for assessing wind energy potential. Here, we aim to characterize microscale wind dynamics through the lens of short-term ecological functions by focusing on spatial and temporal scales most relevant to insects actively searching for odor sources. We collected and compared near-surface wind data across three distinct environments (sage steppe, forest, and urban) in Northern Nevada. Our findings show that near-surface wind direction variability decreases with increasing wind speeds and increases in environments with greater surface complexity. Across environments, there is a strong correlation between the variability in the wind speed (i.e., turbulence intensity) and wind direction (i.e., standard deviation in wind direction). In some environments, the standard deviation in the wind direction varied as much as 15°-75° on time scales of 1-10 min. We draw insight between our findings and previous plume tracking experiments to provide a general intuition for future field research and guidance for wind tunnel design. Our analysis suggests a hypothesis that there may be an ideal range of wind speeds and environment complexity in which insects will be most successful when tracking odor plumes over long distances.
Dissimilar cavitation dynamics and damage patterns produced by parallel fiber alignment to the stone surface in holmium:yttrium aluminum garnet laser lithotripsy
Recent studies indicate that cavitation may play a vital role in laser lithotripsy. However, the underlying bubble dynamics and associated damage mechanisms are largely unknown. In this study, we use ultra-high-speed shadowgraph imaging, hydrophone measurements, three-dimensional passive cavitation mapping (3D-PCM), and phantom test to investigate the transient dynamics of vapor bubbles induced by a holmium:yttrium aluminum garnet laser and their correlation with solid damage. We vary the standoff distance () between the fiber tip and solid boundary under parallel fiber alignment and observe several distinctive features in bubble dynamics. First, long pulsed laser irradiation and solid boundary interaction create an elongated "pear-shaped" bubble that collapses asymmetrically and forms multiple jets in sequence. Second, unlike nanosecond laser-induced cavitation bubbles, jet impact on solid boundary generates negligible pressure transients and causes no direct damage. A non-circular toroidal bubble forms, particularly following the primary and secondary bubble collapses at = 1.0 and 3.0 mm, respectively. We observe three intensified bubble collapses with strong shock wave emissions: the intensified bubble collapse by shock wave, the ensuing reflected shock wave from the solid boundary, and self-intensified collapse of an inverted "triangle-shaped" or "horseshoe-shaped" bubble. Third, high-speed shadowgraph imaging and 3D-PCM confirm that the shock origins from the distinctive bubble collapse form either two discrete spots or a "smiling-face" shape. The spatial collapse pattern is consistent with the similar BegoStone surface damage, suggesting that the shockwave emissions during the intensified asymmetric collapse of the pear-shaped bubble are decisive for the solid damage.
Blockage coefficient of cylindrical blocker and diffusion resistance of membrane channels
This study deals with potential flow of ideal fluid in an infinite cylindrical tube in the presence of a blocking object. The blockage effect of the object on the flow can be characterized by a lump parameter, blockage coefficient, which accounts for the object shape and size. For a cylindrical blocking object, analytical results for the blockage coefficient are known only in three limiting cases: for a long thin cylinder and for small and large blocking disks. We propose a simple analytical expression for the blockage coefficient of a cylindrical blocker of arbitrary length and radius that reduces to the known asymptotic results in the corresponding limits.
Cerebral hemodynamics during atrial fibrillation: Computational fluid dynamics analysis of lenticulostriate arteries using 7 T high-resolution magnetic resonance imaging
Atrial fibrillation (AF) is the most common cardiac arrhythmia, inducing irregular and faster heart beating. Aside from disabling symptoms-such as palpitations, chest discomfort, and reduced exercise capacity-there is growing evidence that AF increases the risk of dementia and cognitive decline, even in the absence of clinical strokes. Among the possible mechanisms, the alteration of deep cerebral hemodynamics during AF is one of the most fascinating and least investigated hypotheses. Lenticulostriate arteries (LSAs)-small perforating arteries perpendicularly departing from the anterior and middle cerebral arteries and supplying blood flow to basal ganglia-are especially involved in silent strokes and cerebral small vessel diseases, which are considered among the main vascular drivers of dementia. We propose for the first time a computational fluid dynamics analysis to investigate the AF effects on the LSAs hemodynamics by using 7 T high-resolution magnetic resonance imaging (MRI). We explored different heart rates (HRs)-from 50 to 130 bpm-in sinus rhythm and AF, exploiting MRI data from a healthy young male and internal carotid artery data from validated 0D cardiovascular-cerebral modeling as inflow condition. Our results reveal that AF induces a marked reduction of wall shear stress and flow velocity fields. This study suggests that AF at higher HR leads to a more hazardous hemodynamic scenario by increasing the atheromatosis and thrombogenesis risks in the LSAs region.
Coronavirus peplomer interaction
By virtue of their lack of motility, viruses rely entirely on their own temperature (Brownian motion) to position themselves properly for cell attachment. Spiked viruses use one or more spikes (called peplomers) to attach. The coronavirus uses adjacent peplomer pairs. These peplomers, identically charged, repel one another over the surface of their convex capsids to form beautiful polyhedra. We identify the edges of these polyhedra with the most important peplomer hydrodynamic interactions. These convex capsids may or may not be spherical, and their peplomer population declines with infection time. These peplomers are short, equidimensional, and bulbous with triangular bulbs. In this short paper, we explore the interactions between nearby peplomer bulbs. By interactions, we mean the hydrodynamic interferences between the velocity profiles caused by the drag of the suspending fluid when the virus rotates. We find that these peplomer hydrodynamic interactions raise rotational diffusivity of the virus, and thus affect its ability to infect.
Effect of stomach motility on food hydrolysis and gastric emptying: Insight from computational models
The peristaltic motion of stomach walls combines with the secretion of digestive enzymes to initiate the process that breaks down food. In this study, the mixing, breakdown, and emptying of a liquid meal containing protein is simulated in a model of a human stomach. In this model, pepsin, the gastric enzyme responsible for protein hydrolysis, is secreted from the proximal region of the stomach walls and allowed to react with the contents of the stomach. The velocities of the retropulsive jet induced by the peristaltic motion, the emptying rate, and the extent of hydrolysis are quantified for a control case as well as for three other cases with reduced motility of the stomach, which may result from conditions such as diabetes mellitus. This study quantifies the effect of stomach motility on the rate of food breakdown and its emptying into the duodenum and we correlate these observations with the mixing in the stomach induced by the wall motion.
Hemodynamic characteristics in a cerebral aneurysm model using non-Newtonian blood analogues
This study aims to develop an experimentally validated computational fluid dynamics (CFD) model to estimate hemodynamic characteristics in cerebral aneurysms (CAs) using non-Newtonian blood analogues. Blood viscosities varying with shear rates were measured under four temperatures first, which serves as the reference for the generation of blood analogues. Using the blood analogue, particle image velocimetry (PIV) measurements were conducted to quantify flow characteristics in a CA model. Then, using the identical blood properties in the experiment, CFD simulations were executed to quantify the flow patterns, which were used to compare with the PIV counterpart. Additionally, hemodynamic characteristics in the simplified Newtonian and non-Newtonian models were quantified and compared using the experimentally validated CFD model. Results showed the proposed non-Newtonian viscosity model can predict blood shear-thinning properties accurately under varying temperatures and shear rates. Another developed viscosity model based on the blood analogue can well represent blood rheological properties. The comparisons in flow characteristics show good agreements between PIV and CFD, demonstrating the developed CFD model is qualified to investigate hemodynamic factors within CAs. Furthermore, results show the differences of absolute values were insignificant between Newtonian and non-Newtonian fluids in the distributions of wall shear stress (WSS) and oscillatory shear index (OSI) on arterial walls. However, not only does the simplified Newtonian model underestimate WSS and OSI in most regions of the aneurysmal sac, but it also makes mistakes in identifying the high OSI regions on the sac surface, which may mislead the hemodynamic assessment on the pathophysiology of CAs.
Computational modeling of drug dissolution in the human stomach: Effects of posture and gastroparesis on drug bioavailability
The oral route is the most common choice for drug administration because of several advantages, such as convenience, low cost, and high patient compliance, and the demand and investment in research and development for oral drugs continue to grow. The rate of dissolution and gastric emptying of the dissolved active pharmaceutical ingredient (API) into the duodenum is modulated by gastric motility, physical properties of the pill, and the contents of the stomach, but current procedures for assessing dissolution of oral drugs are limited in their ability to recapitulate this process. This is particularly relevant for disease conditions, such as gastroparesis, that alter the anatomy and/or physiology of the stomach. models of gastric biomechanics offer the potential for overcoming these limitations of existing methods. In the current study, we employ a biomimetic simulator based on the realistic anatomy and morphology of the stomach (referred to as "StomachSim") to investigate and quantify the effect of body posture and stomach motility on drug bioavailability. The simulations show that changes in posture can potentially have a significant (up to 83%) effect on the emptying rate of the API into the duodenum. Similarly, a reduction in antral contractility associated with gastroparesis can also be found to significantly reduce the dissolution of the pill as well as emptying of the API into the duodenum. The simulations show that for an equivalent motility index, the reduction in gastric emptying due to neuropathic gastroparesis is larger by a factor of about five compared to myopathic gastroparesis.
Splitting of a three-dimensional liquid plug at an airway bifurcation
Employing the moving particles' semi-implicit (MPS) method, this study presents a numerical framework for solving the Navier-Stokes equations for the propagation and the split of a liquid plug through a three-dimensional air-filled bifurcating tube, where the inner surface is coated by a thin fluid film, and surface tension acts on the air-liquid interface. The detailed derivation of a modified MPS method to handle the air-liquid interface of liquid plugs is presented. When the front air-liquid interface of the plug splits at the bifurcation, the interface deforms quickly and causes large wall shear stress. We observe that the presence of a transverse gravitational force causes asymmetries in plug splitting, which becomes more pronounced as the capillary number decreases or the Bond number increases. We also observe that there exists a critical capillary number below which the plug does not split into two daughter tubes but propagates into the lower daughter tube only. In order to deliver the plug into the upper daughter tube, the driving pressure to push the plug is required to overcome the hydrostatic pressure due to gravity. These tendencies agree with our previous experimental and theoretical studies.
Lagrangian dynamics of contaminant particles released from a point source in New York City
In this study, we investigated the transport of contaminants in the southern tip of Manhattan, New York City, under prevailing wind conditions. We considered a hypothetical contaminant particle release on the East side of the New York Stock Exchange at 50 m above the ground level. The transport of individual particles due to the wind flow in the city was simulated by coupling large-eddy simulations (Eulerian) with a Lagrangian model. The simulation results of our coupled Eulerian and Lagrangian approach showed that immediately after the contaminant particles are released, they propagate downwind and expand in the spanwise direction by ∼0.5 km. Specifically, approximately 15 min after the release, the contaminant particles reach the end of the 2.5-km-long study area with a mean velocity of 1.8 m/s, which is approximately 50% of the dominant wind velocity. With the cessation of the particle release, the contaminant particles start to recede from the urban area, mainly owing to their outflux from the study area and the settling of some particles on solid surfaces in the metropolitan area. More specifically, the study area becomes clear of particles in approximately 48.5 min. It was observed that some particles propagate with a mean velocity of 0.6 m/s, i.e., ∼17% of the dominant wind velocity. We also conducted a detailed investigation of the nature of particle transport patterns using finite-time Lyapunov exponents, which showed that dynamically rich Lagrangian coherent structures are formed around the buildings and off the tops of the skyscrapers.
Minimizing the COVID-19 spread in hospitals through optimization of ventilation systems
The rapid spread of SARS-CoV-2 virus has overwhelmed hospitals with patients in need of intensive care, which is often limited in capacity and is generally reserved for patients with critical conditions. This has led to higher chances of infection being spread to non-COVID-19 patients and healthcare workers and an overall increased probability of cross contamination. The effects of design parameters on the performance of ventilation systems to control the spread of airborne particles in intensive care units are studied numerically. Four different cases are considered, and the spread of particles is studied. Two new criteria for the ventilation system-viz., dimensionless timescale and extraction timescale-are introduced and their performances are compared. Furthermore, an optimization process is performed to understand the effects of design variables (inlet width, velocity, and temperature) on the thermal comfort conditions (predicted mean vote, percentage of people dissatisfied, and air change effectiveness) according to suggested standard values and the relations for calculating these parameters based on the design variables are proposed. Desirability functions that are comprised of all three thermal condition parameters are used to determine the range of variables that result in thermally comfortable conditions and a maximum desirability of 0.865 is obtained. The results show that a poorly designed ventilation system acts like a perfectly stirred reactor-which enormously increases the possibilities of contamination-and that when air is injected from the ceiling and extracted from behind the patient beds, the infection spread is least probable since the particles exit the room orders of magnitude faster.
Modeling the filtration efficiency of a woven fabric: The role of multiple lengthscales
During the COVID-19 pandemic, many millions have worn masks made of woven fabric to reduce the risk of transmission of COVID-19. Masks are essentially air filters worn on the face that should filter out as many of the dangerous particles as possible. Here, the dangerous particles are the droplets containing the virus that are exhaled by an infected person. Woven fabric is unlike the material used in standard air filters. Woven fabric consists of fibers twisted together into yarns that are then woven into fabric. There are, therefore, two lengthscales: the diameters of (i) the fiber and (ii) the yarn. Standard air filters have only (i). To understand how woven fabrics filter, we have used confocal microscopy to take three-dimensional images of woven fabric. We then used the image to perform lattice Boltzmann simulations of the air flow through fabric. With this flow field, we calculated the filtration efficiency for particles a micrometer and larger in diameter. In agreement with experimental measurements by others, we found that for particles in this size range, the filtration efficiency is low. For particles with a diameter of 1.5 m, our estimated efficiency is in the range 2.5%-10%. The low efficiency is due to most of the air flow being channeled through relatively large (tens of micrometers across) inter-yarn pores. So, we conclude that due to the hierarchical structure of woven fabrics, they are expected to filter poorly.
Chickensplash! Exploring the health concerns of washing raw chicken
The Food and Drug Administration recommends against washing raw chicken due to the risk of transferring dangerous food-borne pathogens through splashed drops of water. Many cooks continue to wash raw chicken despite this warning, however, and there is a lack of scientific research assessing the extent of microbial transmission in splashed droplets. Here, we use large agar plates to confirm that bacteria can be transferred from the surface of raw chicken through splashing. We also identify and create a phylogenetic tree of the bacteria present on the chicken and the bacteria transferred during splashing. While no food-borne pathogens were identified, we note that organisms in the same genera as pathogens were transferred from the chicken surface through these droplets. Additionally, we show that faucet height, flow type, and surface stiffness play a role in splash height and distance. Using high-speed imaging to explore splashing causes, we find that increasing faucet height leads to a flow instability that can increase splashing. Furthermore, splashing from soft materials such as chicken can create a divot in the surface, leading to splashing under flow conditions that would not splash on a curved, hard surface. Thus, we conclude that washing raw chicken does risk pathogen transfer and cross-contamination through droplet ejection, and that changing washing conditions can increase or decrease the risk of splashing.
The computational fluid dynamics-based epidemic model and the pandemic scenarios
This study presents a computational fluid dynamics, susceptible-infected-recovered-based epidemic model that relates weather conditions to airborne virus transmission dynamics. The model considers the relationship between weather seasonality, airborne virus transmission, and pandemic outbreaks. We examine multiple scenarios of the COVID-19 fifth wave in London, United Kingdom, showing the potential peak and the period occurring. The study also shows the importance of fluid dynamics and computational modeling in developing more advanced epidemiological models in the future.
Evaporation of liquid nanofilms: A minireview
Evaporation of virus-loaded droplets and liquid nanofilms plays a significant role in the pandemic of COVID-19. The evaporation mechanism of liquid nanofilms has attracted much attention in recent decades. In this minireview, we first introduce the relationship between the evaporation process of liquid nanofilms and the pandemic of COVID-19. Then, we briefly provide the frontiers of liquid droplet/nanofilm evaporation on solid surfaces. In addition, we discuss the potential application of machine learning in liquid nanofilm evaporation studies, which is expected to be helpful to build up a more accurate molecular model and to investigate the evaporation mechanism of liquid nanofilms on solid surfaces.
Aerosol transmission in passenger car cabins: Effects of ventilation configuration and driving speed
Identifying the potential routes of airborne transmission during transportation is of critical importance to limit the spread of the SARS-CoV-2 virus. Here, we numerically solve the Reynolds-averaged Navier-Stokes equations along with the transport equation for a passive scalar in order to study aerosol transmission inside the passenger cabin of an automobile. Extending the previous work on this topic, we explore several driving scenarios including the effects of having the windows fully open, half-open, and one-quarter open, the effect of opening a moon roof, and the scaling of the aerosol transport as a function of vehicle speed. The flow in the passenger cabin is largely driven by the external surface pressure distribution on the vehicle, and the relative concentration of aerosols in the cabin scales inversely with vehicle speed. For the simplified geometry studied here, we find that the half-open windows configuration has almost the same ventilation effectively as the one with the windows fully open. The utility of the moonroof as an effective exit vent for removing the aerosols generated within the cabin space is discussed. Using our results, we propose a "speed-time" map, which gives guidance regarding the relative risk of transmission between and as a function of trip duration and vehicle speed. A few strategies for the removal of airborne contaminants during low-speed driving, or in a situation where the vehicle is stuck in traffic, are suggested.