Expanding the Application of Sentinel-2 Chlorophyll Monitoring across United States Lakes
Eutrophication of inland lakes poses various societal and ecological threats, making water quality monitoring crucial. Satellites provide a comprehensive and cost-effective supplement to traditional in situ sampling. The Sentinel-2 MultiSpectral Instrument (S2 MSI) offers unique spectral bands positioned to quantify chlorophyll , a water-quality and trophic-state indicator, along with fine spatial resolution, enabling the monitoring of small waterbodies. In this study, two algorithms-the Maximum Chlorophyll Index (MCI) and the Normalized Difference Chlorophyll Index (NDCI)-were applied to S2 MSI data. They were calibrated and validated using in situ chlorophyll measurements for 103 lakes across the contiguous U.S. Both algorithms were tested using top-of-atmosphere reflectances ( ), Rayleigh-corrected reflectances ( ), and remote sensing reflectances ( ). MCI slightly outperformed NDCI across all reflectance products. MCI using showed the best overall performance, with a mean absolute error factor of 2.08 and a mean bias factor of 1.15. Conversion of derived chlorophyll to trophic state improved the potential for management applications, with 82% accuracy using a binary classification. We report algorithm-to-chlorophyll- conversions that show potential for application across the U.S., demonstrating that S2 can serve as a monitoring tool for inland lakes across broad spatial scales.
Remote Sensing-Based Outdoor Thermal Comfort Assessment in Local Climate Zones in the Rural-Urban Continuum of eThekwini Municipality, South Africa
Due to the need to continuously monitor and understand the thermal environment and its socioeconomic implications, this study used remotely sensed data to analyze thermal comfort variation in LCZs, including along the rural to urban gradient of the eThekwini Municipality in KwaZulu-Natal province of South Africa. LCZs were mapped using multi-temporal and multi-spectral Landsat 8 and Landsat 9 data using the approach by World Urban Database and Access Portal Tools (WUDAPT), while thermal data were used to retrieve land surface temperatures (LSTs). Data for training classification of LCZs and accuracy assessment were digitized from GoogleEarth guided by knowledge gained and data collected during a field survey in March 2022 as well as pre-existing maps. LCZs were mapped using the random forest classifier in SAGA GIS software while a single channel algorithm based on band 10 was used to compute LST for different scenes. The LSTs were adjusted and further used to derive thermal comfort based on the Universal Thermal Comfort Index (UTCI) categories as an indicator for outdoor thermal comfort on the extremely low- and extremely high-temperature periods in the cool and hot seasons, respectively. LCZs were mapped with high accuracy (overall accuracy of 90.1% and kappa of 0.88) while inter-class separability was high (>1.5) for all LCZ pairs. Built-up LCZs dominate the eastern parts of the municipality, signifying the influence of the sea on development within the area. Average LST was coolest in the dense forest, open low-rise and water LCZs in the cool and hot seasons, respectively. The compact high-rise LCZ was the warmest in both the hot (36 °C) and the cool (23 °C) seasons. The sea sands were among coolest regions in both seasons due to their high water content, attributed to their high water table and close proximity to the ocean. There was no thermal stress during the cool season, while most areas recorded moderate to strong heat stress in the hot season. Some areas in the densely built-up LCZs recorded very strong heat stress in the hot season. The findings suggest that policies and strategies should enhance heat mitigation capacities in strong-heat-stress areas during the hot season. Municipal authorities and citizens must work together to build strategies to minimize temperature extremes and associated socioeconomic pressures. Urban development policies, plans and strategies should consider implications on the thermal environment as well as the value of conservation of LCZs with high-heat mitigation value such as dense forests and expansion of built-up LCZs with low-heat absorption levels such as open low-rise. The study was based mainly on remotely sensed temperatures with some ground data used to validate results, which may limit the assessment. Overall, the study provides insights towards achievement of global sustainable and climate-smart development targets.
Impact of Atmospheric Correction on Classification and Quantification of Seagrass Density from WorldView-2 Imagery
Mapping the seagrass distribution and density in the underwater landscape can improve global Blue Carbon estimates. However, atmospheric absorption and scattering introduce errors in space-based sensors' retrieval of sea surface reflectance, affecting seagrass presence, density, and above-ground carbon () estimates. This study assessed atmospheric correction's impact on mapping seagrass using WorldView-2 satellite imagery from Saint Joseph Bay, Saint George Sound, and Keaton Beach in Florida, USA. Coincident in situ measurements of water-leaving radiance (), optical properties, and seagrass leaf area index (LAI) were collected. Seagrass classification and the retrieval of LAI were compared after empirical line height (ELH) and dark-object subtraction (DOS) methods were used for atmospheric correction. DOS left residual brightness in the blue and green bands but had minimal impact on the seagrass classification accuracy. However, the brighter reflectance values reduced LAI retrievals by up to 50% compared to ELH-corrected images and ground-based observations. This study offers a potential correction for LAI underestimation due to incomplete atmospheric correction, enhancing the retrieval of seagrass density and above-ground Blue Carbon from WorldView-2 imagery without in situ observations for accurate atmospheric interference correction.
An Analysis of Prescribed Fire Activities and Emissions in the Southeastern United States from 2013 to 2020
Prescribed burning is a major source of a fine particular matter, especially in the southeastern United States, and quantifying emissions from burning operations accurately is an integral part of ascertaining air quality impacts. For instance, a critical factor in calculating fire emissions is identifying fire activity information (e.g., location, date/time, fire type, and area burned) and prior estimations of prescribed fire activity used for calculating emissions have either used burn permit records or satellite-based remote sensing products. While burn permit records kept by state agencies are a reliable source, they are not always available or readily accessible. Satellite-based remote sensing products are currently used to fill the data gaps, especially in regional studies; however, they cannot differentiate prescribed burns from the other types of fires. In this study, we developed novel algorithms to distinguish prescribed burns from wildfires and agricultural burns in a satellite-derived product, Fire INventory from NCAR (FINN). We matched and compared the burned areas from permit records and FINN at various spatial scales: individual fire level, 4 km grid level, and state level. The methods developed in this study are readily usable for differentiating burn type, matching and comparing the burned area between two datasets at various resolutions, and estimating prescribed burn emissions. The results showed that burned areas from permits and FINN have a weak correlation at the individual fire level, while the correlation is much higher for the 4 km grid and state levels. Since matching at the 4 km grid level showed a relatively higher correlation and chemical transport models typically use grid-based emissions, we used the linear regression relationship between FINN and permit burned areas at the grid level to adjust FINN burned areas. This adjustment resulted in a reduction in FINN-burned areas by 34%. The adjusted burned area was then used as input to the BlueSky Smoke Modeling Framework to provide long-term, three-dimensional prescribed burning emissions for the southeastern United States. In this study, we also compared emissions from different methods (FINN or BlueSky) and different data sources (adjusted FINN or permits) to evaluate uncertainties of our emission estimation. The comparison results showed the impacts of the burned area, method, and data source on prescribed burning emission estimations.
Mapping Malaria Vector Habitats in West Africa: Drone Imagery and Deep Learning Analysis for Targeted Vector Surveillance
Disease control programs are needed to identify the breeding sites of mosquitoes, which transmit malaria and other diseases, in order to target interventions and identify environmental risk factors. The increasing availability of very-high-resolution drone data provides new opportunities to find and characterize these vector breeding sites. Within this study, drone images from two malaria-endemic regions in Burkina Faso and Côte d'Ivoire were assembled and labeled using open-source tools. We developed and applied a workflow using region-of-interest-based and deep learning methods to identify land cover types associated with vector breeding sites from very-high-resolution natural color imagery. Analysis methods were assessed using cross-validation and achieved maximum Dice coefficients of 0.68 and 0.75 for vegetated and non-vegetated water bodies, respectively. This classifier consistently identified the presence of other land cover types associated with the breeding sites, obtaining Dice coefficients of 0.88 for tillage and crops, 0.87 for buildings and 0.71 for roads. This study establishes a framework for developing deep learning approaches to identify vector breeding sites and highlights the need to evaluate how results will be used by control programs.
Changes in Onset of Vegetation Growth on Svalbard, 2000-2020
The global temperature is increasing, and this is affecting the vegetation phenology in many parts of the world. The most prominent changes occur at northern latitudes such as our study area, which is Svalbard, located between 76°30'N and 80°50'N. A cloud-free time series of MODIS-NDVI data was processed. The dataset was interpolated to daily data during the 2000-2020 period with a 231.65 m pixel resolution. The onset of vegetation growth was mapped with a NDVI threshold method which corresponds well with a recent Sentinel-2 NDVI-based mapping of the onset of vegetation growth, which was in turn validated by a network of in-situ phenological data from time lapse cameras. The results show that the years 2000 and 2008 were extreme in terms of the late onset of vegetation growth. The year 2020 had the earliest onset of vegetation growth on Svalbard during the 21-year study. Each year since 2013 had an earlier or equally early timing in terms of the onset of the growth season compared with the 2000-2020 average. A linear trend of 0.57 days per year resulted in an earlier onset of growth of 12 days on average for the entire archipelago of Svalbard in 2020 compared to 2000.
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles
Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition's geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with and RMSE = 0.88 m m. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloudprone agri-environments.
Introducing ARTMO's Machine-Learning Classification Algorithms Toolbox: Application to Plant-Type Detection in a Semi-Steppe Iranian Landscape
Accurate plant-type (PT) detection forms an important basis for sustainable land management maintaining biodiversity and ecosystem services. In this sense, Sentinel-2 satellite images of the Copernicus program offer spatial, spectral, temporal, and radiometric characteristics with great potential for mapping and monitoring PTs. In addition, the selection of a best-performing algorithm needs to be considered for obtaining PT classification as accurate as possible. To date, no freely downloadable toolbox exists that brings the diversity of the latest supervised machine-learning classification algorithms (MLCAs) together into a single intuitive user-friendly graphical user interface (GUI). To fill this gap and to facilitate and automate the usage of MLCAs, here we present a novel GUI software package that allows systematically training, validating, and applying pixel-based MLCA models to remote sensing imagery. The so-called MLCA toolbox has been integrated within ARTMO's software framework developed in Matlab which implements most of the state-of-the-art methods in the machine learning community. To demonstrate its utility, we chose a heterogeneous case study scene, a landscape in Southwest Iran to map PTs. In this area, four main PTs were identified, consisting of shrub land, grass land, semi-shrub land, and shrub land-grass land vegetation. Having developed 21 MLCAs using the same training and validation, datasets led to varying accuracy results. Gaussian process classifier (GPC) was validated as the top-performing classifier, with an overall accuracy (OA) of 90%. GPC follows a Laplace approximation to the Gaussian likelihood under the supervised classification framework, emerging as a very competitive alternative to common MLCAs. Random forests resulted in the second-best performance with an OA of 86%. Two other types of ensemble-learning algorithms, i.e., tree-ensemble learning (bagging) and decision tree (with error-correcting output codes), yielded an OA of 83% and 82%, respectively. Following, thirteen classifiers reported OA between 70% and 80%, and the remaining four classifiers reported an OA below 70%. We conclude that GPC substantially outperformed all classifiers, and thus, provides enormous potential for the classification of a diversity of land-cover types. In addition, its probabilistic formulation provides valuable band ranking information, as well as associated predictive variance at a pixel level. Nevertheless, as these are supervised (data-driven) classifiers, performances depend on the entered training data, meaning that an assessment of all MLCAs is crucial for any application. Our analysis demonstrated the efficacy of ARTMO's MLCA toolbox for an automated evaluation of the classifiers and subsequent thematic mapping.
Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery
Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop's phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R = 0.92, RMSE = 0.43 m m, CCC: R = 0.80, RMSE = 0.27 g m and VWC: R = 0.75, RMSE = 416 g m. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.
What you see is what you breathe? Estimating air pollution spatial variation using street level imagery
High spatial resolution information on urban air pollution levels is unavailable in many areas globally, partially due to high input data needs of existing estimation approaches. Here we introduce a computer vision method to estimate annual means for air pollution levels from street level images. We used annual mean estimates of NO and PM concentrations from locally calibrated models as labels from London, New York, and Vancouver to allow for compilation of a sufficiently large dataset (~250k images for each city). Our experimental setup is designed to quantify intra and intercity transferability of image-based model estimates. Performances were high and comparable to traditional land-use regression (LUR) and dispersion models when training and testing on images from the same city (R values between 0.51 and 0.95 when validated on data from ground monitoring stations). Like LUR models, transferability of models between cities in different geographies is more difficult. Specifically, transferability between the three cities i.e., London, New York, and Vancouver, which have similar pollution source profiles were moderately successful (R values between zero and 0.67). Comparatively, performances when transferring models trained on these cities with very different source profiles i.e., Accra in Ghana and Hong Kong were lower (R between zero and 0.21) suggesting the need for local calibration with local calibration using additional measurement data from cities that share similar source profiles.
Prototyping Crop Traits Retrieval Models for CHIME: Dimensionality Reduction Strategies Applied to PRISMA Data
In preparation for new-generation imaging spectrometer missions and the accompanying unprecedented inflow of hyperspectral data, optimized models are needed to generate vegetation traits routinely. Hybrid models, combining radiative transfer models with machine learning algorithms, are preferred, however, dealing with spectral collinearity imposes an additional challenge. In this study, we analyzed two spectral dimensionality reduction methods: principal component analysis (PCA) and band ranking (BR), embedded in a hybrid workflow for the retrieval of specific leaf area (SLA), leaf area index (LAI), canopy water content (CWC), canopy chlorophyll content (CCC), the fraction of absorbed photosynthetic active radiation (FAPAR), and fractional vegetation cover (FVC). The SCOPE model was used to simulate training data sets, which were optimized with active learning. Gaussian process regression (GPR) algorithms were trained over the simulations to obtain trait-specific models. The inclusion of PCA and BR with 20 features led to the so-called GPR-20PCA and GPR-20BR models. The 20PCA models encompassed over 99.95% cumulative variance of the full spectral data, while the GPR-20BR models were based on the 20 most sensitive bands. Validation against in situ data obtained moderate to optimal results with normalized root mean squared error (NRMSE) from 13.9% (CWC) to 22.3% (CCC) for GPR-20PCA models, and NRMSE from 19.6% (CWC) to 29.1% (SLA) for GPR-20BR models. Overall, the GPR-20PCA slightly outperformed the GPR-20BR models for all six variables. To demonstrate mapping capabilities, both models were tested on a PRecursore IperSpettrale della Missione Applicativa (PRISMA) scene, spectrally resampled to Copernicus Hyperspectral Imaging Mission for the Environment (CHIME), over an agricultural test site (Jolanda di Savoia, Italy). The two strategies obtained plausible spatial patterns, and consistency between the two models was highest for FVC and LAI ( = 0.91, = 0.86) and lowest for SLA mapping ( = 0.53). From these findings, we recommend implementing GPR-20PCA models as the most efficient strategy for the retrieval of multiple crop traits from hyperspectral data streams. Hence, this workflow will support and facilitate the preparations of traits retrieval models from the next-generation operational CHIME.
Evaluation of Hybrid Models to Estimate Chlorophyll and Nitrogen Content of Maize Crops in the Framework of the Future CHIME Mission
In the next few years, the new Copernicus Hyperspectral Imaging Mission (CHIME) is foreseen to be launched by the European Space Agency (ESA). This missions will provide an unprecedented amount of hyperspectral data, enabling new research possibilities within several fields of natural resources, including the "agriculture and food security" domain. In order to efficiently exploit this upcoming hyperspectral data stream, new processing methods and techniques need to be studied and implemented. In this work, the hybrid approach (HYB) and its variant, featuring sampling dimensionality reduction through active learning heuristics (HAL), were applied to CHIME-like data to evaluate the retrieval of crop traits, such as chlorophyll and nitrogen content at both leaf (LCC and LNC) and canopy level (CCC and CNC). The results showed that HYB was able to provide reliable estimations at canopy level (R = 0.79, RMSE = 0.38 g m for CCC and R = 0.84, RMSE = 1.10 g m for CNC) but failed at leaf level. The HAL approach improved retrieval accuracy at canopy level (best metric: R = 0.88 and RMSE = 0.21 g m for CCC; R = 0.93 and RMSE = 0.71 g m for CNC), providing good results also at leaf level (best metrics: R = 0.72 and RMSE = 3.31 μg cm for LCC; R = 0.56 and RMSE = 0.02 mg cm for LNC). The promising results obtained through the hybrid approach support the feasibility of an operational retrieval of chlorophyll and nitrogen content, e.g., in the framework of the future CHIME mission. However, further efforts are required to investigate the approach across different years, sites and crop types in order to improve its transferability to other contexts.
Multi-Season Phenology Mapping of Nile Delta Croplands Using Time Series of Sentinel-2 and Landsat 8 Green LAI
Space-based cropland phenology monitoring substantially assists agricultural managing practices and plays an important role in crop yield predictions. Multitemporal satellite observations allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or by deriving biophysical variables. The Nile Delta represents about half of all agricultural lands of Egypt. In this region, intensifying farming systems are predominant and multi-cropping rotations schemes are increasing, requiring a high temporal and spatial resolution monitoring for capturing successive crop growth cycles. This study presents a workflow for cropland phenology characterization and mapping based on time series of green Leaf Area Index (LAI) generated from NASA's Harmonized Landsat 8 (L8) and Sentinel-2 (S2) surface reflectance dataset from 2016 to 2019. LAI time series were processed for each satellite dataset, which were used separately and combined to identify seasonal dynamics for a selection of crop types (wheat, clover, maize and rice). For the combination of L8 with S2 LAI products, we proposed two time series smoothing and fitting methods: (1) the Savitzky-Golay (SG) filter and (2) the Gaussian Processes Regression (GPR) fitting function. Single-sensor and L8-S2 combined LAI time series were used for the calculation of key crop Land Surface Phenology (LSP) metrics (start of season, end of season, length of season), whereby the detection of cropland growing seasons was based on two established threshold methods, i.e., a seasonal or a relative amplitude value. Overall, the developed phenology extraction scheme enabled identifying up to two successive crop cycles within a year, with a superior performance observed for the seasonal than for the relative threshold method, in terms of consistency and cropland season detection capability. Differences between the time series collections were analyzed by comparing the phenology metrics per crop type and year. Results suggest that L8-S2 combined LAI data streams with GPR led to a more precise detection of the start and end of growing seasons for most crop types, reaching an overall detection of 74% over the total planted crops versus 69% with S2 and 63% with L8 alone. Finally, the phenology mapping allowed us to evaluate the spatial and temporal evolution of the croplands over the agroecosystem in the Nile Delta.
Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine
Thanks to the emergence of cloud-computing platforms and the ability of machine learning methods to solve prediction problems efficiently, this work presents a workflow to automate spatiotemporal mapping of essential vegetation traits from Sentinel-3 (S3) imagery. The traits included leaf chlorophyll content (LCC), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fractional vegetation cover (FVC), being fundamental for assessing photosynthetic activity on Earth. The workflow involved Gaussian process regression (GPR) algorithms trained on top-of-atmosphere (TOA) radiance simulations generated by the coupled canopy radiative transfer model (RTM) SCOPE and the atmospheric RTM 6SV. The retrieval models, named to S3-TOA-GPR-1.0, were directly implemented in Google Earth Engine (GEE) to enable the quantification of the traits from TOA data as acquired from the S3 Ocean and Land Colour Instrument (OLCI) sensor.Following good to high theoretical validation results with normalized root mean square error (NRMSE) ranging from 5% (FAPAR) to 19% (LAI), a three fold evaluation approach over diverse sites and land cover types was pursued: (1) temporal comparison against LAI and FAPAR products obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) for the time window 2016-2020, (2) spatial difference mapping with Copernicus Global Land Service (CGLS) estimates, and (3) direct validation using interpolated in situ data from the VALERI network. For all three approaches, promising results were achieved. Selected sites demonstrated coherent seasonal patterns compared to LAI and FAPAR MODIS products, with differences between spatially averaged temporal patterns of only 6.59%. In respect of the spatial mapping comparison, estimates provided by the S3-TOA-GPR-1.0 models indicated highest consistency with FVC and FAPAR CGLS products. Moreover, the direct validation of our S3-TOA-GPR-1.0 models against VALERI estimates indicated with regard to jurisdictional claims in good retrieval performance for LAI, FAPAR and FVC. We conclude that our retrieval workflow of spatiotemporal S3 TOA data processing into GEE opens the path towards global monitoring of fundamental vegetation traits, accessible to the whole research community.
Retrieval of Crop Variables from Proximal Multispectral UAV Image Data Using PROSAIL in Maize Canopy
Mapping crop variables at different growth stages is crucial to inform farmers and plant breeders about the crop status. For mapping purposes, inversion of canopy radiative transfer models (RTMs) is a viable alternative to parametric and non-parametric regression models, which often lack transferability in time and space. Due to the physical nature of RTMs, inversion outputs can be delivered in sound physical units that reflect the underlying processes in the canopy. In this study, we explored the capabilities of the coupled leaf-canopy RTM PROSAIL applied to high-spatial-resolution (0.015 m) multispectral unmanned aerial vehicle (UAV) data to retrieve the leaf chlorophyll content (LCC), leaf area index (LAI) and canopy chlorophyll content (CCC) of sweet and silage maize throughout one growing season. Two different retrieval methods were tested: (i) applying the RTM inversion scheme to mean reflectance data derived from single breeding plots (mean reflectance approach) and (ii) applying the same inversion scheme to an orthomosaic to separately retrieve the target variables for each pixel of the breeding plots (pixel-based approach). For LCC retrieval, soil and shaded pixels were removed by applying simple vegetation index thresholding. Retrieval of LCC from UAV data yielded promising results compared to ground measurements (sweet maize RMSE = 4.92 μg/cm, silage maize RMSE = 3.74 μg/cm) when using the mean reflectance approach. LAI retrieval was more challenging due to the blending of sunlit and shaded pixels present in the UAV data, but worked well at the early developmental stages (sweet maize RMSE = 0.70m/m, silage RMSE = 0.61m/m across all dates). CCC retrieval significantly benefited from the pixel-based approach compared to the mean reflectance approach (RMSEs decreased from 45.6 to 33.1 μg/m). We argue that high-resolution UAV imagery is well suited for LCC retrieval, as shadows and background soil can be precisely removed, leaving only green plant pixels for the analysis. As for retrieving LAI, it proved to be challenging for two distinct varieties of maize that were characterized by contrasting canopy geometry.
Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression
Monitoring cropland phenology from optical satellite data remains a challenging task due to the influence of clouds and atmospheric artifacts. Therefore, measures need to be taken to overcome these challenges and gain better knowledge of crop dynamics. The arrival of cloud computing platforms such as Google Earth Engine (GEE) has enabled us to propose a Sentinel-2 (S2) phenology end-to-end processing chain. To achieve this, the following pipeline was implemented: (1) the building of hybrid Gaussian Process Regression (GPR) retrieval models of crop traits optimized with active learning, (2) implementation of these models on GEE (3) generation of spatiotemporally continuous maps and time series of these crop traits with the use of gap-filling through GPR fitting, and finally, (4) calculation of land surface phenology (LSP) metrics such as the start of season (SOS) or end of season (EOS). Overall, from good to high performance was achieved, in particular for the estimation of canopy-level traits such as leaf area index (LAI) and canopy chlorophyll content, with normalized root mean square errors (NRMSE) of 9% and 10%, respectively. By means of the GPR gap-filling time series of S2, entire tiles were reconstructed, and resulting maps were demonstrated over an agricultural area in Castile and Leon, Spain, where crop calendar data were available to assess the validity of LSP metrics derived from crop traits. In addition, phenology derived from the normalized difference vegetation index (NDVI) was used as reference. NDVI not only proved to be a robust indicator for the calculation of LSP metrics, but also served to demonstrate the good phenology quality of the quantitative trait products. Thanks to the GEE framework, the proposed workflow can be realized anywhere in the world and for any time window, thus representing a shift in the satellite data processing paradigm. We anticipate that the produced LSP metrics can provide meaningful insights into crop seasonal patterns in a changing environment that demands adaptive agricultural production.
SMAP Salinity Retrievals near the Sea-Ice Edge Using Multi-Channel AMSR2 Brightness Temperatures
Sea-ice contamination in the antenna field of view constitutes a large error source in retrieving sea-surface salinity (SSS) with the spaceborne Soil Moisture Active Passive (SMAP) L-band radiometer. This is a major obstacle in the current NASA/Remote Sensing Systems (RSS) SMAP SSS retrieval algorithm in regards to obtaining accurate SSS measurements in the polar oceans. Our analysis finds a strong correlation between 8-day averaged SMAP L-band brightness temperature (TB) bias and TB measurements from the Advanced Microwave Scanning Radiometer (AMSR2) in the C-through Ka-band frequency range for sea-ice contaminated ocean scenes. We show how this correlation can be employed to develop: (1) a discriminant analysis that is able to reliably flag the SMAP observations for sea-ice contamination and (2) subsequently remove the sea-ice contamination from the SMAP observations, which results in significantly more accurate SMAP SSS retrievals near the sea-ice edge. We provide a case study that evaluates the performance of the proposed sea-ice flagging and correction algorithm. Our method is also able to detect drifting icebergs, which go often undetected in many available standard sea-ice products and thus result in spurious SMAP SSS retrievals.
Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform
Vegetation Types (VTs) are important managerial units, and their identification serves as essential tools for the conservation of land covers. Despite a long history of Earth observation applications to assess and monitor land covers, the quantitative detection of sparse VTs remains problematic, especially in arid and semiarid areas. This research aimed to identify appropriate multi-temporal datasets to improve the accuracy of VTs classification in a heterogeneous landscape in Central Zagros, Iran. To do so, first the Normalized Difference Vegetation Index (NDVI) temporal profile of each VT was identified in the study area for the period of 2018, 2019, and 2020. This data revealed strong seasonal phenological patterns and key periods of VTs separation. It led us to select the optimal time series images to be used in the VTs classification. We then compared single-date and multi-temporal datasets of Landsat 8 images within the Google Earth Engine (GEE) platform as the input to the Random Forest classifier for VTs detection. The single-date classification gave a median Overall Kappa (OK) and Overall Accuracy (OA) of 51% and 64%, respectively. Instead, using multi-temporal images led to an overall kappa accuracy of 74% and an overall accuracy of 81%. Thus, the exploitation of multi-temporal datasets favored accurate VTs classification. In addition, the presented results underline that available open access cloud-computing platforms such as the GEE facilitates identifying optimal periods and multitemporal imagery for VTs classification.
Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery
Non-photosynthetic vegetation (NPV) biomass has been identified as a priority variable for upcoming spaceborne imaging spectroscopy missions, calling for a quantitative estimation of lignocellulosic plant material as opposed to the sole indication of surface coverage. Therefore, we propose a hybrid model for the retrieval of non-photosynthetic cropland biomass. The workflow included coupling the leaf optical model PROSPECT-PRO with the canopy reflectance model 4SAIL, which allowed us to simulate NPV biomass from carbon-based constituents (CBC) and leaf area index (LAI). PROSAIL-PRO provided a training database for a Gaussian process regression (GPR) algorithm, simulating a wide range of non-photosynthetic vegetation states. Active learning was employed to reduce and optimize the training data set. In addition, we applied spectral dimensionality reduction to condense essential information of non-photosynthetic signals. The resulting NPV-GPR model was successfully validated against soybean field data with normalized root mean square error (nRMSE) of 13.4% and a coefficient of determination (R) of 0.85. To demonstrate mapping capability, the NPV-GPR model was tested on a PRISMA hyperspectral image acquired over agricultural areas in the North of Munich, Germany. Reliable estimates were mainly achieved over senescent vegetation areas as suggested by model uncertainties. The proposed workflow is the first step towards the quantification of non-photosynthetic cropland biomass as a next-generation product from near-term operational missions, such as CHIME.
Emulation of Sun-Induced Fluorescence from Radiance Data Recorded by the HyPlant Airborne Imaging Spectrometer
The retrieval of sun-induced fluorescence (SIF) from hyperspectral radiance data grew to maturity with research activities around the FLuorescence EXplorer satellite mission FLEX, yet full-spectrum estimation methods such as the spectral fitting method (SFM) are computationally expensive. To bypass this computational load, this work aims to approximate the SFM-based SIF retrieval by means of statistical learning, i.e., . While emulators emerged as fast surrogate models of simulators, the accuracy-speedup trade-offs are still to be analyzed when the emulation concept is applied to experimental data. We evaluated the possibility of approximating the SFM-like SIF output directly based on radiance data while minimizing the loss in precision as opposed to SFM-based SIF. To do so, we implemented a double principal component analysis (PCA) dimensionality reduction, i.e., in both input and output, to achieve emulation of multispectral SIF output based on hyperspectral radiance data. We then evaluated systematically: (1) multiple machine learning regression algorithms, (2) number of principal components, (3) number of training samples, and (4) quality of training samples. The best performing SIF emulator was then applied to a HyPlant flight line containing at sensor radiance information, and the results were compared to the SFM SIF map of the same flight line. The emulated SIF map was quasi-instantaneously generated, and a good agreement against the reference SFM map was obtained with a of 0.88 and NRMSE of 3.77%. The SIF emulator was subsequently applied to 7 HyPlant flight lines to evaluate its robustness and portability, leading to a between 0.68 and 0.95, and a NRMSE between 6.42% and 4.13%. Emulated SIF maps proved to be consistent while processing time was in the order of 3 min. In comparison, the original SFM needed approximately 78 min to complete the SIF processing. Our results suggest that emulation can be used to efficiently reduce computational loads of SIF retrieval methods.
Classification of Plant Ecological Units in Heterogeneous Semi-Steppe Rangelands: Performance Assessment of Four Classification Algorithms
Plant Ecological Unit's (PEUs) are the abstraction of vegetation communities that occur on a site which similarly respond to management actions and natural disturbances. Identification and monitoring of PEUs in a heterogeneous landscape is the most difficult task in medium resolution satellite images datasets. The main objective of this study is to compare pixel-based classification versus object-based classification for accurately classifying PEUs with four selected different algorithms across heterogeneous rangelands in Central Zagros, Iran. We used images of Landsat-8 OLI that were pan-sharpened to 15 m to classify four PEU classes based on a random dataset collected in the field (40%). In the first stage, we applied the following classification algorithms to distinguish PEUs: Minimum Distance (MD), Maximum Likelihood Classification (MLC), Neural Network-Multi Layer Perceptron (NN-MLP) and Classification Tree Analysis (CTA) for pixel based method and object based method. Then, by using the most accurate classification approach, in the second stage auxiliary data (Principal Component Analysis (PCA)) was incorporated to improve the accuracy of the PEUs classification process. At the end, test data (60%) were used for accuracy assessment of the resulting maps. Object-based maps clearly outperformed pixel-based maps, especially with CTA, NN-MLP and MD algorithms with overall accuracies of 86%, 72% and 59%, respectively. The MLC algorithm did not reveal any significant difference between the object-based and pixel-based analyses. Finally, complementing PCA auxiliary bands to the CTA algorithms offered the most successful PEUs classification strategy, with the highest overall accuracy (89%). The results clearly underpin the importance of object-based classification with the CTA classifier together with PCA auxiliary data to optimize identification of PEU classes.