Frontiers in Environmental Science

Watershed analysis of urban stormwater contaminant 6PPD-Quinone hotspots and stream concentrations using a process-based ecohydrological model
Halama JJ, McKane RB, Barnhart BL, Pettus PP, Brookes AF, Adams AK, Gockel CK, Djang KS, Phan V, Chokshi SM, Graham JJ, Tian Z, Peter KT and Kolodziej EP
Coho salmon () are highly sensitive to 6PPD-Quinone (6PPD-Q). Details of the hydrological and biogeochemical processes controlling spatial and temporal dynamics of 6PPD-Q fate and transport from points of deposition to receiving waters (e.g., streams, estuaries) are poorly understood. To understand the fate and transport of 6PPD and mechanisms leading to salmon mortality Visualizing Ecosystem Land Management Assessments (VELMA), an ecohydrological model developed by US Environmental Protection Agency (EPA), was enhanced to better understand and inform stormwater management planning by municipal, state, and federal partners seeking to reduce stormwater contaminant loads in urban streams draining to the Puget Sound National Estuary. This work focuses on the 5.5 km2 Longfellow Creek upper watershed (Seattle, Washington, United States), which has long exhibited high rates of acute urban runoff mortality syndrome in coho salmon. We present VELMA model results to elucidate these processes for the Longfellow Creek watershed across multiple scales-from 5-m grid cells to the entire watershed. Our results highlight hydrological and biogeochemical controls on 6PPD-Q flow paths, and hotspots within the watershed and its stormwater infrastructure, that ultimately impact contaminant transport to Longfellow Creek and Puget Sound. Simulated daily average 6PPD-Q and available observed 6PPD-Q peak in-stream grab sample concentrations (ng/L) corresponds within plus or minus 10 ng/L. Most importantly, VELMA's high-resolution spatial and temporal analysis of 6PPD-Q hotspots provides a tool for prioritizing the locations, amounts, and types of green infrastructure that can most effectively reduce 6PPD-Q stream concentrations to levels protective of coho salmon and other aquatic species.
Improving ecosystem health in highly altered river basins: a generalized framework and its application to the Mississippi-Atchafalaya River Basin
McLellan EL, Suttles KM, Bouska KL, Ellis JH, Flotemersch JE, Goff M, Golden HE, Hill RA, Hohman TR, Keerthi S, Keim RF, Kleiss BA, Lark TJ, Piazza BP, Renfro AA, Robertson DM, Schilling KE, Schmidt TS and Waite IR
Continued large-scale public investment in declining ecosystems depends on demonstrations of "success". While the public conception of "success" often focuses on restoration to a pre-disturbance condition, the scientific community is more likely to measure success in terms of improved ecosystem health. Using a combination of literature review, workshops and expert solicitation we propose a generalized framework to improve ecosystem health in highly altered river basins by reducing ecosystem stressors, enhancing ecosystem processes and increasing ecosystem resilience. We illustrate the use of this framework in the Mississippi-Atchafalaya River Basin (MARB) of the central United States (U.S.), by (i) identifying key stressors related to human activities, and (ii) creating a conceptual ecosystem model relating those stressors to effects on ecosystem structure and processes. As a result of our analysis, we identify a set of landscape-level indicators of ecosystem health, emphasizing leading indicators of stressor removal (e.g., reduced anthropogenic nutrient inputs), increased ecosystem function (e.g., increased water storage in the landscape) and increased resilience (e.g., changes in the percentage of perennial vegetative cover). We suggest that by including these indicators, along with lagging indicators such as direct measurements of water quality, stakeholders will be better able to assess the effectiveness of management actions. For example, if both leading and lagging indicators show improvement over time, then management actions are on track to attain desired ecosystem condition. If, however, leading indicators are not improving or even declining, then fundamental challenges to ecosystem health remain to be addressed and failure to address these will ultimately lead to declines in lagging indicators such as water quality. Although our model and indicators are specific to the MARB, we believe that the generalized framework and the process of model and indicator development will be valuable in an array of altered river basins.
Freshwater salinization syndrome limits management efforts to improve water quality
Maas CM, Kaushal SS, Rippy MA, Mayer PM, Grant SB, Shatkay RR, Malin JT, Bhide SV, Vikesland P, Krauss L, Reimer JE and Yaculak AM
Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed "chemical cocktails", in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (, road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (, permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (, Na, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers.
Longitudinal stream synoptic monitoring tracks chemicals along watershed continuums: a typology of trends
Kaushal SS, Maas CM, Mayer PM, Newcomer-Johnson TA, Grant SB, Rippy MA, Shatkay RR, Leathers J, Gold AJ, Smith C, McMullen EC, Haq S, Smith R, Duan S, Malin J, Yaculak A, Reimer JE, Newcomb KD, Raley AS, Collison DC, Galella JG, Grese M, Sivirichi G, Doody TR, Vikesland P, Bhide SV, Krauss L, Daugherty M, Stavrou C, Etheredge M, Ziegler J, Kirschnick A, England W and Belt KT
There are challenges in monitoring and managing water quality due to spatial and temporal heterogeneity in contaminant sources, transport, and transformations. We demonstrate the importance of longitudinal stream synoptic (LSS) monitoring, which can track combinations of water quality parameters along flowpaths across space and time. Specifically, we analyze longitudinal patterns of chemical mixtures of carbon, nutrients, greenhouse gasses, salts, and metals concentrations along 10 flowpaths draining 1,765 km of the Chesapeake Bay region. These 10 longitudinal stream flowpaths are drained by watersheds experiencing either urban degradation, forest and wetland conservation, or stream and floodplain restoration. Along the 10 longitudinal stream flowpaths, we monitored over 300 total sampling sites along a combined stream length of 337 km. Synoptic monitoring along longitudinal flowpaths revealed: (1) increasing, decreasing, piecewise, or no trends and transitions in water quality with increasing distance downstream, which provide insights into water quality processes along flowpaths; (2) longitudinal trends and transitions in water quality along flowpaths can be quantified and compared using simple linear and non-linear statistical relationships with distance downstream and/or land use/land cover attributes, (3) attenuation and transformation of chemical cocktails along flowpaths depend on: spatial scales, pollution sources, and transitions in land use and management, hydrology, and restoration. We compared our LSS patterns with others from the global literature to synthesize a typology of longitudinal water quality trends and transitions in streams and rivers based on hydrological, biological, and geochemical processes. Applications of LSS monitoring along flowpaths from our results and the literature reveal: (1) if there are shifts in pollution sources, trends, and transitions along flowpaths, (2) which pollution sources can spread further downstream to sensitive receiving waters such as drinking water supplies and coastal zones, and (3) if transitions in land use, conservation, management, or restoration can attenuate downstream transport of pollution sources. Our typology of longitudinal water quality responses along flowpaths combines many observations across suites of chemicals that can follow predictable patterns based on watershed characteristics. Our typology of longitudinal water quality responses also provides a foundation for future studies, watershed assessments, evaluating watershed management and stream restoration, and comparing watershed responses to non-point and point pollution sources along streams and rivers. LSS monitoring, which integrates both spatial and temporal dimensions and considers multiple contaminants together (a chemical cocktail approach), can be a comprehensive strategy for tracking sources, fate, and transport of pollutants along stream flowpaths and making comparisons of water quality patterns across different watersheds and regions.
Stormwater Best Management Practices: Experimental Evaluation of Chemical Cocktails Mobilized by Freshwater Salinization Syndrome
Galella JG, Kaushal SS, Mayer PM, Maas CM, Shatkay RR and Stutzke RA
Freshwater Salinization Syndrome (FSS) refers to the suite of physical, biological, and chemical impacts of salt ions on the degradation of natural, engineered, and social systems. Impacts of FSS on mobilization of chemical cocktails has been documented in streams and groundwater, but little research has focused on the effects of FSS on stormwater best management practices (BMPs) such as: constructed wetlands, bioswales, ponds, and bioretention. However emerging research suggests that stormwater BMPs may be both sources and sinks of contaminants, shifting seasonally with road salt applications. We conducted lab experiments to investigate this premise; replicate water and soil samples were collected from four distinct stormwater feature types (bioretention, bioswale, constructed wetlands and retention ponds) and were used in salt incubation experiments conducted under six different salinities with three different salts (NaCl, CaCl, and MgCl). Increased salt concentrations had profound effects on major and trace element mobilization, with all three salts showing significant positive relationships across nearly all elements analyzed. Across all sites, mean salt retention was 34%, 28%, and 26% for Na, Mg and Ca respectively, and there were significant differences among stormwater BMPs. Salt type showed preferential mobilization of certain elements. NaCl mobilized Cu, a potent toxicant to aquatic biota, at rates over an order of magnitude greater than both CaCl and MgCl. Stormwater BMP type also had a significant effect on elemental mobilization, with ponds mobilizing significantly more Mn than other sites. However, salt concentration and salt type consistently had significant effects on mean concentrations of elements mobilized across all stormwater BMPs (p<0.05), suggesting that processes such as ion exchange mobilize metals mobilize metals and salt ions regardless of BMP type. Our results suggest that decisions regarding the amounts and types of salts used as deicers can have significant effects on reducing contaminant mobilization to freshwater ecosystems.
Runnels mitigate marsh drowning in microtidal salt marshes
Watson EB, Ferguson W, Champlin LK, White JD, Ernst N, Sylla HA, Wilburn BP and Wigand C
As a symptom of accelerated sea level rise and historic impacts to tidal hydrology from agricultural and mosquito control activities, coastal marshes in the Northeastern U.S. are experiencing conversion to open water through edge loss, widening and headward erosion of tidal channels, and the formation and expansion of interior ponds. These interior ponds often form in high elevation marsh, confounding the notion applied in predictive modeling that salt marshes convert to open water when elevation falls below a critical surface inundation threshold. The installation of tidal channel extension features, or runnels, is a technique that has been implemented to reduce water levels and permit vegetation reestablishment in drowning coastal marshes, although there are limited data available to recommend its advisability. We report on 5 years of vegetation and hydrologic monitoring of two locations where a total of 600-m of shallow (0.15-0.30-m in diameter and depth) runnels were installed in 2015 and 2016 to enhance drainage, in the Pettaquamscutt River Estuary, in southern Rhode Island, United States. Results from this Before-After Control-Impact (BACI) designed study found that runnel installation successfully promoted plant recolonization, although runnels did not consistently promote increases in high marsh species presence or diversity. Runnels reduced the groundwater table (by 0.07-0.12 m), and at one location, the groundwater table experienced a 2-fold increase in the fraction of the in-channel tidal range that was observed in the marsh water table. We suggest that restoration of tidal hydrology through runnel installation holds promise as a tool to encourage revegetation and extend the lifespan of drowning coastal marshes where interior ponds are expanding. In addition, our study highlights the importance of considering the rising groundwater table as an important factor in marsh drowning due to expanding interior ponds found on the marsh platform.
Laying it on thick: Ecosystem effects of sediment placement on a microtidal Rhode Island salt marsh
Raposa KB, Bradley M, Chaffee C, Ernst N, Ferguson W, Kutcher TE, McKinney RA, Miller KM, Rasmussen S, Tymkiw E and Wigand C
Heightened recognition of impacts to coastal salt marshes from sea-level rise has led to expanding interest in using thin-layer sediment placement (TLP) as an adaptation tool to enhance future marsh resilience. Building on successes and lessons learned from the Gulf and southeast U.S. coasts, projects are now underway in other regions, including New England where the effects of TLP on marsh ecosystems and processes are less clear. In this study, we report on early responses of a drowning, microtidal Rhode Island marsh (Ninigret Marsh, Charlestown, RI) to the application of a thick (10-48 cm) application of sandy dredged material and complimentary extensive adaptive management to quickly build elevation capital and enhance declining high marsh plant species. Physical changes occurred quickly. Elevation capital, rates of marsh elevation gain, and soil drainage all increased, while surface inundation, die-off areas, and surface ponding were greatly reduced. Much of the marsh revegetated within a few years, exhibiting aspects of classic successional processes leading to new expansive areas of high marsh species, although low marsh recovered more slowly. Faunal communities, including nekton and birds, were largely unaffected by sediment placement. Overall, sediment placement provided Ninigret Marsh with an estimated 67-320 years of ambient elevation gain, increasing its resilience and likely long-term persistence. Project stakeholders intentionally aimed for the upper end of high marsh plant elevation growth ranges to build elevation capital and minimize maintenance costs, which also resulted in new migration corridors, providing pathways for future marsh expansion.
Using a vegetation index to assess wetland condition in the Prairie Pothole Region of North America
Tangen BA, Bansal S, Jones S, Dixon CS, Nahlik AM, DeKeyser ES, Hargiss CLM and Mushet DM
Wetlands deliver a suite of ecosystem services to society. Anthropogenic activities, such as wetland drainage, have resulted in considerable wetland loss and degradation, diminishing the intrinsic value of wetland ecosystems worldwide. Protecting remaining wetlands and restoring degraded wetlands are common management practices to preserve and reclaim wetland benefits to society. Accordingly, methods for monitoring and assessing wetlands are required to evaluate their ecologic condition and outcomes of restoration activities. We used an established methodology for conducting vegetation-based assessments and describe a case study consisting of a wetland condition assessment in the Prairie Pothole Region of the North American Great Plains. We provide an overview of an existing method for selecting wetlands to sample across broad geographic distributions using a spatially balanced statistical design. We also describe site assessment protocols, including vegetation survey methods, and how field data were applied to a vegetation index that categorized wetlands according to ecologic condition. Results of the case study indicated that vegetation communities in nearly 50% of the surveyed wetlands were in or condition, while only about 25% were considered or . Approximately 70% of wetlands in native grasslands were categorized as or compared to only 12% of those in reseeded grasslands (formerly cropland). In terms of informing restoration and management activities, results indicated that improved restoration practices could include a greater focus on establishing natural vegetation communities, and both restored and native prairie wetlands would benefit from enhanced management of invasive species.
CaFÉ: A Sensitive, Low-Cost Filtration Method for Detecting Polioviruses and Other Enteroviruses in Residual Waters
Belgasmi H, Miles SJ, Sayyad L, Wong K, Harrington C, Gerloff N, Coulliette-Salmond AD, Guntapong R, Tacharoenmuang R, Ayutthaya AIN, Apostol LNG, Valencia MAD, Burns CC, Benito GR and Vega E
Acute flaccid paralysis (AFP) surveillance has been used to identify polio cases and target vaccination campaigns since the inception of the Global Poliovirus Eradication Initiative (GPEI) in 1988. To date, only Afghanistan and Pakistan have failed to interrupt wild poliovirus transmission. Circulation of vaccine-derived polioviruses (VDPV) continues to be a problem in high-risk areas of the Eastern Mediterranean, African, and Southeast Asian regions. Environmental surveillance (ES) is an important adjunct to AFP surveillance, helping to identify circulating polioviruses in problematic areas. Stools from AFP cases and contacts (>200,000 specimens/year) and ES samples (>642 sites) are referred to 146 laboratories in the Global Polio Laboratory Network (GPLN) for testing. Although most World Health Organization supported laboratories use the two-phase separation method due to its simplicity and effectiveness, alternative simple, widely available, and cost-effective methods are needed. The CAFÉ (Concentration and Filtration Elution) method was developed from existing filtration methods to handle any type of sewage or residual waters. At $10-20 US per sample for consumable materials, CAFÉ is cost effective, and all equipment and reagents are readily available from markets and suppliers globally. The report describes the results from a parallel study of CAFÉ method with the standard two-phase separation method. The study was performed with samples collected from five countries (Guatemala, Haïti, Thailand, Papua New Guinea, and the Philippines), run in three laboratories-(United States, Thailand and in the Philippines) to account for regional and sample-to-sample variability. Samples from each site were divided into two 500 ml aliquots and processed by both methods, with no other additional concentration or manipulation. The results of 338 parallel-tested samples show that the CAFÉ method is more sensitive than the two-phase separation method for detection of non-polio enteroviruses (-value < 0.0001) and performed as well as the two-phase separation method for polioviruses detection with no significant difference (-value > 0.05). The CAFÉ method is a robust, sensitive, and cost-effective method for isolating enteroviruses from residual waters.
Assembly and Curation of Lists of Per- and Polyfluoroalkyl Substances (PFAS) to Support Environmental Science Research
Williams AJ, Gaines LGT, Grulke CM, Lowe CN, Sinclair GFB, Samano V, Thillainadarajah I, Meyer B, Patlewicz G and Richard AM
Per- and polyfluoroalkyl substances (PFAS) are a class of man-made chemicals of global concern for many health and regulatory agencies due to their widespread use and persistence in the environment (in soil, air, and water), bioaccumulation, and toxicity. This concern has catalyzed a need to aggregate data to support research efforts that can, in turn, inform regulatory and statutory actions. An ongoing challenge regarding PFAS has been the shifting definition of what qualifies a substance to be a member of the PFAS class. There is no single definition for a PFAS, but various attempts have been made to utilize substructural definitions that either encompass broad working scopes or satisfy narrower regulatory guidelines. Depending on the size and specificity of PFAS substructural filters applied to the U.S. Environmental Protection Agency (EPA) DSSTox database, currently exceeding 900,000 unique substances, PFAS substructure-defined space can span hundreds to tens of thousands of compounds. This manuscript reports on the curation of PFAS chemicals and assembly of lists that have been made publicly available to the community via the EPA's CompTox Chemicals Dashboard. Creation of these PFAS lists required the harvesting of data from EPA and online databases, peer-reviewed publications, and regulatory documents. These data have been extracted and manually curated, annotated with structures, and made available to the community in the form of lists defined by structure filters, as well as lists comprising non-structurable PFAS, such as polymers and complex mixtures. These lists, along with their associated linkages to predicted and measured data, are fueling PFAS research efforts within the EPA and are serving as a valuable resource to the international scientific community.
Identification of Branched and Linear Forms of PFOA and Potential Precursors: A User-Friendly SMILES Structure-based Approach
Richard AM, Hidle H, Patlewicz G and Williams AJ
Perfluorooctanoic acid (PFOA) and related compounds are per- and polyfluorinated alkyl substances (PFASs) of concern from toxicological, environmental, and regulatory perspectives. In 2019, the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants listed PFOA, its salts, and PFOA-related compounds in Annex A to the Convention. Additionally, the listing specifically included PFOA branched isomers and compounds containing a perfluoroheptyl (C7F15)C moiety, with some noted exclusions. A draft updated "Indicative List" of 393 PFASs (335 with defined structures), each specified as falling within or outside the listing, was released for comment in 2021. The U.S. Environmental Protection Agency's CompTox Chemicals Dashboard has published a curated PFAS list containing more than 10,700 structures. Applying the PFOA and related compounds listing definition to screen this list required a structure-based approach capable of discerning salts and branched or linear forms of the (C7F15)C moiety. A PFOA SMILES workflow and associated Excel macro file, developed to address this need, applies a series of text substitution rules to a set of canonicalized SMILES structure representations to convert branched forms of the (C7F15)C moiety to linear forms to aid their detection. The approach correctly classified each Stockholm Convention draft Indicative List structure relative to the PFOA and related compounds definition, and accurately discerned branched and linear forms of the (C7F15)C moiety in over 10,700 PFAS structures with 100% sensitivity (no false negatives) and 99.7% accuracy (35 false positives). Approximately 20% of structures in the large PFAS list fell within the PFOA and related compounds definition, and 10% of those were branched. The present work highlights the need to computationally detect branched forms of PFASs and promotes the use of unambiguous, structure-based definitions, along with tools that are publicly available and easy to use, to support clear communication and regulatory action within the PFAS community.
: A Promising Supplementary Indicator of Microbial Drinking Water Quality in Municipal Engineered Water Systems
Zhang C and Lu J
Opportunistic pathogens (OPs) are natural inhabitants and the predominant disease causative biotic agents in municipal engineered water systems (EWSs). In EWSs, OPs occur at high frequencies and concentrations, cause drinking-water-related disease outbreaks, and are a major factor threatening public health. Therefore, the prevalence of OPs in EWSs represents microbial drinking water quality. Closely or routinely monitoring the dynamics of OPs in municipal EWSs is thus critical to ensuring drinking water quality and protecting public health. Monitoring the dynamics of conventional (fecal) indicators (e.g., total coliforms, fecal coliforms, and ) is the customary or even exclusive means of assessing microbial drinking water quality. However, those indicators infer only fecal contamination due to treatment (e.g., disinfection within water utilities) failure and EWS infrastructure issues (e.g., water main breaks and infiltration), whereas OPs are not contaminants in drinking water. In addition, those indicators appear in EWSs at low concentrations (often absent in well-maintained EWSs) and are uncorrelated with OPs. For instance, conventional indicators decay, while OPs regrow with increasing hydraulic residence time. As a result, conventional indicators are poor indicators of OPs (the major aspect of microbial drinking water quality) in EWSs. An additional or supplementary indicator that can well infer the prevalence of OPs in EWSs is highly needed. This systematic review argues that as a dominant OP-containing genus and natural inhabitant in EWSs is a promising candidate for such a supplementary indicator. Through comprehensively comparing the behavior (i.e., occurrence, growth and regrowth, spatiotemporal variations in concentrations, resistance to disinfectant residuals, and responses to physicochemical water quality parameters) of major OPs (e.g., especially . , , and especially . ), this review proves that is a promising supplementary indicator for the prevalence of OPs in EWSs while other OPs lack this indication feature. as a dominant natural inhabitant in EWSs occurs frequently, has a high concentration, and correlates with more microbial and physicochemical water quality parameters than other common OPs. and OPs in EWSs share multiple key features such as high disinfectant resistance, biofilm formation, proliferation within amoebae, and significant spatiotemporal variations in concentrations. Therefore, the presence and concentration of well indicate the presence and concentrations of OPs (especially . ) and microbial drinking water quality in EWSs. In addition, concentration indicates the efficacies of disinfectant residuals in EWSs. Furthermore, with the development of modern quantification methods (especially quantitative polymerase chain reactions), monitoring in ESWs is becoming easier, more affordable, and less labor-intensive. Those features make a proper supplementary indicator for microbial drinking water quality (especially the prevalence of OPs) in EWSs. Water authorities may use and conventional indicators in combination to more comprehensively assess microbial drinking water quality in municipal EWSs. Future work should further explore the indication role of in EWSs and propose drinking water concentration limits that indicate serious public health effects and require enhanced treatment (e.g., booster disinfection).
Predictive Model of Lake Photic Zone Temperature Across the Conterminous United States
Kreakie BJ, Shivers SD, Hollister JW and Milstead WB
As the average global air temperature increases, lake surface temperatures are also increasing globally. The influence of this increased temperature is known to impact lake ecosystems across local to broad scales. Warming lake temperature is linked to disruptions in trophic linkages, changes in thermal stratification, and cyanobacteria bloom dynamics. Thus, comprehending broad trends in lake temperature is important to understanding the changing ecology of lakes and the potential human health impacts of these changes. To help address this, we developed a simple yet robust random forest model of lake photic zone temperature using the 2007 and 2012 United States Environmental Protection Agency's National Lakes Assessment data for the conterminous United States. The final model has a root mean square error of 1.48°C and an adjusted R of 0.88; the final model included 2,282 total samples. The sampling date, that day's average ambient air temperature and longitude are the most important variables impacting the final model's accuracy. The final model also included 30-days average temperature, elevation, latitude, lake area, and lake shoreline length. Given the importance of temperature to a lake ecosystem, this model can be a valuable tool for researchers and lake resource managers. Daily predicted lake photic zone temperature for all lakes in the conterminous US can now be estimated based on basic ambient temperature and location information.
Messaging on Slow Impacts: Applying Lessons Learned from Climate Change Communication to Catalyze and Improve Marine Nutrient Communication
Canfield KN, Mulvaney K and Merrill N
Building publics' understanding about human-environmental causes and impacts of nutrient pollution is difficult due to the diverse sources and, at times, extended timescales of increasing inputs, consequences to ecosystems, and recovery after remediation. Communicating environmental problems with "slow impacts" has long been a challenge for scientists, public health officials, and science communicators, as the time delay for subsequent consequences to become evident dilutes the sense of urgency to act. Fortunately, scientific research and practice in the field of climate change communication has begun to identify best practices to address these challenges. Climate change demonstrates a delay between environmental stressor and impact, and recommended practices for climate change communication illustrate how to explain and motivate action around this complex environmental problem. Climate change communication research provides scientific understanding of how people evaluate risk and scientific information about climate change. We used a qualitative coding approach to review the science communication and climate change communication literature to identify approaches that could be used for nutrients and how they could be applied. Recognizing the differences between climate change and impacts of nutrient pollution, we also explore how environmental problems with delayed impacts demand nuanced strategies for effective communication and public engagement. Applying generalizable approaches to successfully communicate the slow impacts related to nutrient pollution across geographic contexts will help build publics' understanding and urgency to act on comprehensive management of nutrient pollution, thereby increasing protection of coastal and marine environments.
Spatio-Temporal Modeling for Forecasting High-Risk Freshwater Cyanobacterial Harmful Algal Blooms in Florida
Myer MH, Urquhart E, Schaeffer BA and Johnston JM
Due to the occurrence of more frequent and widespread toxic cyanobacteria events, the ability to predict freshwater cyanobacteria harmful algal blooms (cyanoHAB) is of critical importance for the management of drinking and recreational waters. Lake system specific geographic variation of cyanoHABs has been reported, but regional and state level variation is infrequently examined. A spatio-temporal modeling approach can be applied, via the computationally efficient Integrated Nested Laplace Approximation (INLA), to high-risk cyanoHAB exceedance rates to explore spatio-temporal variations across statewide geographic scales. We explore the potential for using satellite-derived data and environmental determinants to develop a short-term forecasting tool for cyanobacteria presence at varying space-time domains for the state of Florida. Weekly cyanobacteria abundance data were obtained using Sentinel-3 Ocean Land Color Imagery (OLCI), for a period of May 2016-June 2019. Time and space varying covariates include surface water temperature, ambient temperature, precipitation, and lake geomorphology. The hierarchical Bayesian spatio-temporal modeling approach in R-INLA represents a potential forecasting tool useful for water managers and associated public health applications for predicting near future high-risk cyanoHAB occurrence given the spatio-temporal characteristics of these events in the recent past. This method is robust to missing data and unbalanced sampling between waterbodies, both common issues in water quality datasets.
PAH SORPTION TO NANOPLASTICS AND THE TROJAN HORSE EFFECT AS DRIVERS OF MITOCHONDRIAL TOXICITY AND PAH LOCALIZATION IN ZEBRAFISH
Trevisan R, Uzochukwu D and Di Giulio RT
Plastics are world-wide pollutants that pose a potential threat to wildlife and human health. Small plastic particles, such as microplastics and nanoplastics, are easily ingested, and can act as a Trojan Horse by carrying microorganisms and pollutants. This study investigated the potential role of the Trojan Horse effect in the toxicity of nanoplastics to the vertebrate model organism, zebrafish (Danio rerio). First, we investigated if this effect could affect the toxicity of nanoplastics. Second, we analyzed if it could contribute to the biodistribution of the associated contaminants. And third, we focused on its effect on the mitochondrial toxicity of nanoplastics. We incubated 44 nm polystyrene nanoparticles with a real-world mixture of polycyclic aromatic hydrocarbons (PAHs) for 7 days and removed the free PAHs by ultrafiltration. We dosed embryos with 1 ppm of nanoplastics (NanoPS) or PAH-sorbed nanoplastics (PAH-NanoPS). Neither type of plastic particle caused changes in embryonic and larval development. Fluorescence microscopy and increased EROD activity suggested the uptake of PAHs in larvae exposed to PAH-NanoPS. This coincided with higher concentrations in the yolk sac and the brain. However, PAH-only exposure leads to their accumulation in the yolk sac but not in the brain, suggesting that that the spatial distribution of bioaccumulated PAHs can differ depending on their source of exposure. Both nanoplastic particles affected mitochondrial energy metabolism but caused different adverse effects. While NanoPS decreased NADH production, PAH-NanoPS decreased mitochondrial coupling efficiency and spare respiratory capacity. In summary, the addition of PAHs to the surface of nanoplastics did not translate into increased developmental toxicity. Low levels of PAHs were accumulated in the organisms, and the transfer of PAHs seems to happen in tissues and possibly organelles where nanoplastics accumulate. Disruption of the energy metabolism in the mitochondria may be a key factor in the toxicity of nanoplastics, and the Trojan Horse effect may amplify this effect.
Mapping Land Use Land Cover Change in the Lower Mekong Basin from 1997 to 2010
Spruce J, Bolten J, Mohammed IN, Srinivasan R and Lakshmi V
The Lower Mekong Basin (LMB) is biologically diverse, economically important, and home to about 65 million people. The region has undergone extensive environmental changes since the 1990s due to such factors as agricultural expansion and intensification, deforestation, more river damming, increased urbanization, growing human populations, expansion of industrial forest plantations, plus frequent natural disasters from flooding and drought. The Mekong river is also heavily used for human transportation, fishing, drinking water, and irrigation. This paper discusses use of pre-existing LULC maps from 1997 and 2010 to derive a LMB regional LULC change map for 9 classes per date using GIS overlay techniques. The change map was derived to aid SWAT hydrologic modeling applications in the LMB, given the 2010 map is currently used in multiple LMB SWAT models, whereas the 1997 map was previously used. The 2010 LULC map was constructed from Landsat and MODIS satellite data, while the 1997 map was from before the MODIS era and therefore based on available Landsat data. The 1997-2010 LULC change map showed multiple trends. Permanent agriculture had expanded in certain sub-basins into previously forested areas. Some agricultural areas were converted to industrial forest plantations. Extensive forest changes also occurred in some locations, such as areas changed to shifting cultivation or permanent crops. Also, the 1997 map under classified some urban areas, whereas the 2010 LULC map showed improved identification of such areas. LULC map accuracy were assessed for 213 randomly sampled locations. The 1997 and 2010 LULC maps showed high overall agreements with reference data exceeding 87%. The LULC change map yielded a moderately high level of overall agreement (78%) that improved to ~83% once LULC classification scheme specificity was reduced (forests and agriculture were each mapped as singular classes). The change map regionally showed a 4% decrease in agriculture and a 4 % increase in deciduous and evergreen forests combined, though deforestation hot spot areas also were evident. The project yielded LULC map data sets that are now available for aiding additional studies that assess LMB LULC change and the impacts such change may pose to water, agriculture, forestry, and disaster management efforts. More work is needed to map, quantify and assess LULC change since 2010 and to further update the 2010 LULC map currently used in the LMB SWAT models.
Challenging Global Waste Management - Bioremediation to Detoxify Asbestos
Wallis SL, Emmett EA, Hardy R, Casper BB, Blanchon DJ, Testa JR, Menges CW, Gonneau C, Jerolmack DJ, Seiphoori A, Steinhorn G and Berry TA
As the 21st century uncovers ever-increasing volumes of asbestos and asbestos-contaminated waste, we need a new way to stop 'grandfather's problem' from becoming that of our future generations. The production of inexpensive, mechanically strong, heat resistant building materials containing asbestos has inevitably led to its use in many public and residential buildings globally. It is therefore not surprising that since the asbestos boom in the 1970s, some 30 years later, the true extent of this hidden danger was exposed. Yet, this severely toxic material continues to be produced and used in some countries, and in others the disposal options for historic uses - generally landfill - are at best unwieldy and at worst insecure. We illustrate the global scale of the asbestos problem via three case studies which describe various removal and/or end disposal issues. These case studies from both industrialised and island nations demonstrate the potential for the generation of massive amounts of asbestos contaminated soil. In each case, the final outcome of the project was influenced by factors such as cost and land availability, both increasing issues, worldwide. The reduction in the generation of asbestos containing materials will not absolve us from the necessity of handling and disposal of contaminated land. Waste treatment which relies on physico-chemical processes is expensive and does not contribute to a circular model economy ideal. Although asbestos is a mineral substance, there are naturally occurring biological-mediated processes capable of degradation (such as bioweathering). Therefore, low energy options, such as bioremediation, for the treatment for asbestos contaminated soils are worth exploring. We outline evidence pointing to the ability of microbe and plant communities to remove from asbestos the iron that contributes to its carcinogenicity. Finally, we describe the potential for a novel concept of creating ecosystems over asbestos landfills ('activated landfills') that utilize nature's chelating ability to degrade this toxic product effectively.
Microplastics in Sea Turtles, Marine Mammals and Humans: A One Environmental Health Perspective
Meaza I, Toyoda JH and Wise JP
Microplastics are ubiquitous pollutants in the marine environment and a health concern. They are generated directly for commercial purposes or indirectly from the breakdown of larger plastics. Examining a toxicological profile for microplastics is a challenge due to their large variety of physico-chemical properties and toxicological behavior. In addition to their concentration, other parameters such as polymer type, size, shape and color are important to consider in their potential toxicity. Microplastics can adsorb pollutants such as polycyclic aromatic hydrocarbons (PAHs) or metals on their surface and are likely to contain plastic additives that add to their toxicity. The observations of microplastics in seafood increased concern for potential human exposure. Since literature considering microplastics in humans is scarce, using a One Environmental Health approach can help better inform about potential human exposures. Marine mammals and sea turtles are long-lived sentinel species regularly used for biomonitoring the health status of the ocean and share trophic chain and habitat with humans. This review considers the available research regarding microplastic and plastic fiber exposures in humans, marine mammals and turtles. Overall, across the literature, the concentration of microplastics, size, color, shape and polymer types found in GI tract and feces from sea turtles, marine mammals and humans are similar, showing that they might be exposed to the same microplastics profile. Additionally, even if ingestion is a major route of exposure due to contaminated food and water, dermal and inhalation studies in humans have provided data showing that these exposures are also health concerns and more effort on these routes of exposures is needed. studies looked at a variety of endpoints showing that microplastics can induce immune response, oxidative stress, cytotoxicity, alter membrane integrity and cause differential expression of genes. However, these studies only considered three polymer types and short-term exposures, whereas, due to physiological relevance, prolonged exposures might be more informative.
Impact of Hurricane Katrina on the coastal systems of southern Louisiana
Chuang WC, Eason T, Garmestani A and Roberts C
Natural disasters, such as hurricanes and forest fires, could trigger collapse and reorganization of social-ecological systems. In the face of external perturbations, a resilient system would have capacity to absorb impacts, adapt to change, learn, and if needed, reorganize within the same regime. Within this context, we asked how human and natural systems in Louisiana responded to Hurricane Katrina, and how the natural disaster altered the status of these systems. This paper discusses community resilience to natural hazards and addresses the limitations for assessing disaster resilience. Furthermore, we assessed social and environmental change in New Orleans and southern Louisiana through both a spatial and temporal lens (i.e., pre- and post-Katrina). By analyzing changes in system condition using social, economic and environmental factors, we identified some of the characteristics of the system's reorganization trajectories. Our results suggest that although the ongoing population recovery may be a sign of revitalization, the city and metropolitan area continue to face socioeconomic inequalities and environmental vulnerability to natural disasters. Further, the spatial distribution of social-ecological condition over time reveals certain levels of change and reorganization after Katrina, but the reorganization did not translate into greater equity. This effort presents an enhanced approach to assessing social-ecological change pre and post disturbance and provides a way forward for characterizing pertinent aspects of disaster resilience.
Bringing soil chemistry to environmental health science to tackle soil contaminants
Duckworth OW, Polizzotto ML and Thompson A
With an estimated five million sites worldwide, soil contamination is a global-scale threat to environmental and human health. Humans continuously interact with soil, both directly and indirectly, making soils potentially significant sources of exposure to contaminants. Soil chemists are thus a potentially dynamic part of a collaborative cohort attacking environmental health science problems, yet collaborations between soil chemists and environmental heath scientists remain infrequent. In this commentary, we discuss the unique properties of soils that influence contaminants, as well as ways that soil chemists can contribute to environmental health research. Additionally, we describe barriers to, and needs for, the integration of soil chemistry expertise in environmental health science research with a focus on the future.