Automatic Detection of Severely and Mildly Infected COVID-19 Patients with Supervised Machine Learning Models
When the prognosis of COVID-19 disease can be detected early, the intense-pressure and loss of workforce in health-services can be partially reduced. The primary-purpose of this article is to determine the feature-dataset consisting of the routine-blood-values (RBV) and demographic-data that affect the prognosis of COVID-19. Second, by applying the feature-dataset to the supervised machine-learning (ML) models, it is to identify severely and mildly infected COVID-19 patients at the time of admission.
AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions
In recent years, Artificial Intelligence has had an evident impact on the way research addresses challenges in different domains. It has proven to be a huge asset, especially in the medical field, allowing for time-efficient and reliable solutions. This research aims to spotlight the impact of deep learning and machine learning models in the detection of COVID-19 from medical images. This is achieved by conducting a review of the state-of-the-art approaches proposed by the recent works in this field.
Deep Transfer Learning Based Classification Model for COVID-19 Disease
The COVID-19 infection is increasing at a rapid rate, with the availability of limited number of testing kits. Therefore, the development of COVID-19 testing kits is still an open area of research. Recently, many studies have shown that chest Computed Tomography (CT) images can be used for COVID-19 testing, as chest CT images show a bilateral change in COVID-19 infected patients. However, the classification of COVID-19 patients from chest CT images is not an easy task as predicting the bilateral change is defined as an ill-posed problem. Therefore, in this paper, a deep transfer learning technique is used to classify COVID-19 infected patients. Additionally, a top-2 smooth loss function with cost-sensitive attributes is also utilized to handle noisy and imbalanced COVID-19 dataset kind of problems. Experimental results reveal that the proposed deep transfer learning-based COVID-19 classification model provides efficient results as compared to the other supervised learning models.
Automated Deep Transfer Learning-Based Approach for Detection of COVID-19 Infection in Chest X-rays
The most widely used novel coronavirus (COVID-19) detection technique is a real-time polymerase chain reaction (RT-PCR). However, RT-PCR kits are costly and take 6-9 hours to confirm infection in the patient. Due to less sensitivity of RT-PCR, it provides high false-negative results. To resolve this problem, radiological imaging techniques such as chest X-rays and computed tomography (CT) are used to detect and diagnose COVID-19. In this paper, chest X-rays is preferred over CT scan. The reason behind this is that X-rays machines are available in most of the hospitals. X-rays machines are cheaper than the CT scan machine. Besides this, X-rays has low ionizing radiations than CT scan. COVID-19 reveals some radiological signatures that can be easily detected through chest X-rays. For this, radiologists are required to analyze these signatures. However, it is a time-consuming and error-prone task. Hence, there is a need to automate the analysis of chest X-rays. The automatic analysis of chest X-rays can be done through deep learning-based approaches, which may accelerate the analysis time. These approaches can train the weights of networks on large datasets as well as fine-tuning the weights of pre-trained networks on small datasets. However, these approaches applied to chest X-rays are very limited. Hence, the main objective of this paper is to develop an automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays by using the extreme version of the Inception (Xception) model. Extensive comparative analyses show that the proposed model performs significantly better as compared to the existing models.
An Adaptive Low-Rank Modeling-Based Active Learning Method for Medical Image Annotation
Active learning is an effective solution to interactively select a limited number of informative examples and use them to train a learning algorithm that can achieve its optimal performance for specific tasks. It is suitable for medical image applications in which unlabeled data are abundant but manual annotation could be very time-consuming and expensive. However, designing an effective active learning strategy for informative example selection is a challenging task, due to the intrinsic presence of noise in medical images, the large number of images, and the variety of imaging modalities. In this study, a novel low-rank modeling-based multi-label active learning (LRMMAL) method is developed to address these challenges and select informative examples for training a classifier to achieve the optimal performance. The proposed method independently quantifies image noise and integrates it with other measures to guide a pool-based sampling process to determine the most informative examples for training a classifier. In addition, an automatic adaptive cross entropy-based parameter determination scheme is proposed for further optimizing the example sampling strategy. Experimental results on varied medical image datasets and comparisons with other state-of-the-art multi-label active learning methods illustrate the superior performance of the proposed method.
COVID-19 Detection System Using Chest CT Images and Multiple Kernels-Extreme Learning Machine Based on Deep Neural Network
Coronavirus disease is a fatal epidemic that has originated in Wuhan, China in December 2019. This disease is diagnosed using radiological images taken with the help of basic scanning methods besides the test kits for Reverse Transcription Polymerase Chain Reaction (RT-PCR). Automatic analysis of chest Computed Tomography (CT) images that are based on image processing technology plays an important role in combating this infectious disease.
[Protein arrays and perspectives of medical applications]
Protein microarrays make it possible to detect molecular interactions with various partners (proteins, peptides, nucleic acids, sugars, etc.). Their advantages are crucial for high-throughput analysis of proteomes of different organisms. Moreover, the recent data reveal the performance of microarrays over current immunological methods. Therefore, the antigen and antibody microarrays become indispensable for medical applications, in particular, for diagnosis and prognosis of microbial infections, autoimmune and allergic diseases. The further technological progress might provide the extension of the miniaturized assays for multiparametric monitoring of human pathologies in practical medicine.