Elevating microRNA levels by targeting biogenesis with steric-blocking antisense oligonucleotides
MicroRNAs (miRNAs) are regulators of gene expression, and their dysregulation is linked to cancer and other diseases, making them important therapeutic targets. Several strategies for targeting and modulating miRNA activity are being explored. For example, steric-blocking antisense oligonucleotides (ASOs) can reduce miRNA activity by either blocking binding sites on specific mRNAs or base-pairing to the miRNA itself to prevent its interaction with the target mRNAs. ASOs have been less explored as a tool to elevate miRNA levels, which could also be beneficial for treating disease. In this study, using the /miR-1225 gene locus as an example, where miR-1225 is located within a intron, we demonstrate an ASO-based strategy that increases miRNA abundance by enhancing biogenesis from the primary miRNA transcript. Disruptions in and miR-1225 are associated with autosomal dominant polycystic kidney disease (ADPKD) and various cancers, respectively, making them important therapeutic targets. We investigated sequence variants reported in ADPKD that are located within the sequence shared by miR-1225 and and identified one that causes a reduction in miR-1225 without affecting We show that this reduction in miR-1225 can be recovered by treatment with a steric-blocking ASO. The ASO-induced increase in miR-1225 correlates with a decrease in the abundance of predicted miR-1225 cellular mRNA targets. This study demonstrates that miRNA abundance can be elevated using ASOs targeted to the primary transcript. This steric-blocking ASO-based approach has broad potential application as a therapeutic strategy for diseases that could be treated by modulating miRNA biogenesis.
Mitochondrial mRNA and the Small Subunit rRNA in Budding Yeasts Undergo 3'-End Processing at Conserved Species-specific Elements
Respiration in eukaryotes depends on mitochondrial protein synthesis, which is performed by organelle-specific ribosomes translating organelle-encoded mRNAs. Although RNA maturation and stability are central events controlling mitochondrial gene expression, many of the molecular details in this pathway remain elusive. These include cis- and trans-regulatory factors that generate and protect the 3' ends. Here, we mapped the 3' ends of mitochondrial mRNAs of yeasts classified into multiple families of the subphylum Saccharomycotina. We found that the processing of mitochondrial 15S rRNA and mRNAs involves species-specific sequence elements, which we term 3'-end RNA processing elements (3'-RPEs). In Saccharomyces cerevisiae, the 3'-RPE has long been recognized as a conserved dodecamer sequence, which recent studies have shown to specifically interact with the nuclear genome-encoded pentatricopeptide repeat protein Rmd9. We also demonstrate that, analogous to Rmd9 in Saccharomyces cerevisiae, two Rmd9 orthologs from the Debaryomycetaceae family interact with their respective 3'-RPEs found in mRNAs and 15S rRNA. Thus, Rmd9-dependent processing of mitochondrial RNA precursors is a common mechanism among the families of the Saccharomycotina subphylum. This represents an example of mitochondrial-nuclear co-evolution. Surprisingly, we observed that 3'-RPEs often occur upstream of stop codons in complex I subunit mRNAs from yeasts of the CUG-Ser1 clade. We examined two of these mature mRNAs and found that their stop codons are indeed removed. Thus, translation of these transcripts would require a novel termination mechanism. Our findings establish Rmd9 as a key evolutionarily conserved factor in both mitochondrial mRNA metabolism and mitoribosome biogenesis in a variety of yeasts.
Two dynamic, N-terminal regions are required for function in Ribosomal RNA Adenine Dimethylase family members
Prominent members of the Ribosomal RNA Adenine Dimethylase (RRAD) family of enzymes facilitate ribosome maturation by dimethylating two nucleotides of small subunit rRNA including the human DIMT1 and bacterial KsgA enzymes. A sub-group of RRAD enzymes, named erythromycin resistance methyltransferases (Erm) dimethylate a specific nucleotide in large subunit rRNA to confer antibiotic resistance. How these enzymes regulate methylation so that it only occurs on the specific substrate is not fully understood. While performing random mutagenesis on the catalytic domain of ErmE, we discovered that mutants in an N-terminal region of the protein that is disordered in the ErmE crystal structure are associated with a loss of antibiotic resistance. By subjecting site-directed mutants of ErmE and KsgA to phenotypic and in vitro assays we found that the N-terminal region is critical for activity in RRAD enzymes: the N-terminal basic region promotes rRNA binding and the conserved motif likely assists in juxtaposing the adenosine substrate and the SAM cofactor. Our results and emerging structural data suggest this dynamic, N-terminal region of RRAD enzymes becomes ordered upon rRNA binding forming a cap on the active site required for methylation.
Sod1-deficient cells are impaired in formation of the modified nucleosides mcmsU and yW in tRNA
Uridine residues present at the wobble position of eukaryotic cytosolic tRNAs often carry a 5-carbamoylmethyl (ncm), 5-methoxycarbonylmethyl (mcm), or 5-methoxycarbonylhydroxymethyl (mchm) side-chain. The presence of these side-chains allows proper pairing with cognate codons, and they are particularly important in tRNA species where the U residue is also modified with a 2-thio (s) group. The first step in the synthesis of the ncm, mcm, and mchm side-chains is dependent on the six-subunit Elongator complex, whereas the thiolation of the 2-position is catalyzed by the Ncs6/Ncs2 complex. In both yeast and metazoans, allelic variants of Elongator subunit genes show genetic interactions with mutant alleles of , which encodes the cytosolic Cu, Zn-superoxide dismutase. However, the cause of these genetic interactions remains unclear. Here, we show that yeast null mutants are impaired in the formation of 2-thio-modified U residues. In addition, the lack of Sod1 induces a defect in the biosynthesis of wybutosine, which is a modified nucleoside found at position 37 of tRNA Our results suggest that these tRNA modification defects are caused by superoxide-induced inhibition of the iron-sulfur cluster-containing Ncs6/Ncs2 and Tyw1 enzymes. Since mutations in Elongator subunit genes generate strong negative genetic interactions with mutant and alleles, our findings at least partially explain why the activity of Elongator can modulate the phenotypic consequences of alleles. Collectively, our results imply that tRNA hypomodification may contribute to impaired proteostasis in Sod1-deficient cells.
Independent neofunctionalization of Dxo1 in and led to 25S rRNA processing function
Eukaryotic genomes typically encode one member of the DXO/Dxo1/Rai1 family of enzymes, which can hydrolyze the 5' ends of RNAs with a variety of structures that deviate from the canonical GpppN. In contrast, the genome encodes two family members and the second copy, Dxo1, is a distributive 5' exoribonuclease that is required for the final maturation of the 5' end of 25S rRNA from a 25S' precursor. Here we show that this 25S rRNA maturation function is not conserved across kingdoms, but arose in the budding yeasts. Interestingly, the origin of 25S processing capacity coincides with the duplication of this gene, and this capacity is absent in the nonduplicated genes. Strikingly, two different clades of budding yeasts have undergone parallel evolution: Both duplicated their DXO/Dxo1/Rai1 gene, and in both cases, one copy gained the 25S processing function. This was accompanied by many parallel sequence changes, a remarkable case of reproducible neofunctionalization.
Identification, characterization, and structure of a tRNA splicing enzyme RNA 5'-OH kinase from the pathogenic fungi Mucorales
Fungal Trl1 is an essential tRNA splicing enzyme composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that convert the 2',3'-cyclic-PO and 5'-OH ends of tRNA exons into the 3'-OH,2'-PO and 5'-PO termini required for sealing by an N-terminal ATP-dependent ligase domain. Trifunctional Trl1 enzymes are present in most human fungal pathogens and are untapped targets for antifungal drug discovery. Mucorales species, deemed high-priority human pathogens by WHO, elaborate a noncanonical tRNA splicing apparatus in which a stand-alone monofunctional RNA ligase enzyme joins 3'-OH,2'-PO and 5'-PO termini. Here we identify a stand-alone polynucleotide kinase (MciKIN) and affirm its biological activity in tRNA splicing by genetic complementation in yeast. Recombinant MciKIN catalyzes magnesium-dependent phosphorylation of 5'-OH RNA and DNA ends in vitro. MciKIN displays a strong preference for GTP as the phosphate donor in the kinase reaction, a trait shared with the stand-alone RNA kinase homologs from Mucorales species (RazKIN) and (LcoKIN) and with the kinase domains of fungal Trl1 enzymes. We report a 1.65 Å crystal structure of RazKIN in complex with GDP•Mg that illuminates the basis for guanosine nucleotide specificity.
Beyond RNA-binding domains: determinants of protein-RNA binding
RNA-binding proteins (RBPs) are composed of RNA-binding domains (RBDs) often linked via intrinsically disordered regions (IDRs). Structural and biochemical analyses have shown that disordered linkers contribute to RNA binding by orienting the adjacent RBDs and also characterized certain disordered repeats that directly contact the RNA. However, the relative contribution of IDRs and predicted RBDs to the in vivo binding pattern is poorly explored. Here, we upscaled the RNA-tagging method to map the transcriptome-wide binding of 16 RBPs in budding yeast. We then performed extensive sequence mutations to distinguish binding determinants within predicted RBDs and the surrounding IDRs in eight of these. The majority of the predicted RBDs tested were not individually essential for mRNA binding. However, multiple IDRs that lacked predicted RNA-binding potential appeared essential for binding affinity or specificity. Our results provide new insights into the function of poorly studied RBPs and emphasize the complex and distributed encoding of RBP-RNA interaction in vivo.
The riboswitch senses flavin mononucleotide within a defined transcriptional window
Riboswitches are metabolite-binding RNA regulators that modulate gene expression at the levels of transcription and translation. One of the hallmarks of riboswitch regulation is that they undergo structural changes upon metabolite binding. While a lot of effort has been put to characterize how the metabolite is recognized by the riboswitch, there is still relatively little information regarding how ligand sensing is performed within a transcriptional context. Here, we study the ligand-dependent cotranscriptional folding of the FMN-sensing riboswitch of Using RNase H assays to study nascent riboswitch transcripts, DNA probes targeting the P1 and sequestering stems indicate that FMN binding leads to the protection of these regions from RNase H cleavage, consistent with the riboswitch inhibiting translation initiation when bound to FMN. Our results show that ligand sensing is strongly affected by the position of elongating RNA polymerase, which is defining an FMN-binding transcriptional window that is bordered in its 3' extremity by a transcriptional pause site. Also, using successively overlapping DNA probes targeting a subdomain of the riboswitch, our data suggest the presence of a previously unsuspected helical region involving the 3' strand of the P1 stem. Our results show that this helical region is conserved across bacterial species, thus suggesting that this predicted structure, the anti*-P1 stem, is involved in the FMN-free conformation of the riboswitch. Overall, our study further demonstrates that intricate folding strategies may be used by riboswitches to perform metabolite sensing during the transcriptional process.
Exploring the energetic and conformational properties of the sequence space connecting naturally occurring RNA tetraloop receptor motifs
Folded RNAs contain tertiary contact motifs whose structures and energetics are conserved across different RNAs. The transferable properties of RNA motifs simplify the RNA folding problem, but measuring energetic and conformational properties of many motifs remains a challenge. Here, we use a high-throughput thermodynamic approach to investigate how sequence changes alter the binding properties of naturally occurring motifs, the GAAA tetraloop • tetraloop receptor (TLR) interactions. We measured the binding energies and conformational preferences of TLR sequences that span mutational pathways from the canonical 11ntR to two other natural TLRs, the IC3R and Vc2R. While the IC3R and Vc2R share highly similar energetic and conformational properties, the landscapes that map the sequence changes for their conversion from the 11ntR to changes in these properties differ dramatically. Differences in the energetic landscapes stem from the mutations needed to convert the 11ntR to the IC3R and Vc2R rather than a difference in the intrinsic energetic architectures of these TLRs. The conformational landscapes feature several nonnative TLR variants with conformational preferences that differ from both the initial and final TLRs; these species represent potential branching points along the multidimensional sequence space to sequences with greater fitness in other RNA contexts with alternative conformational preferences. Our high-throughput, quantitative approach reveals the complex nature of sequence-fitness landscapes and leads to models for their molecular origins. Systematic and quantitative molecular approaches provide critical insights into understanding the evolution of natural RNAs as they traverse complex landscapes in response to selective pressures.
Translation elongation inhibitors stabilize select short-lived transcripts
Translation elongation inhibitors are commonly used to study different cellular processes. Yet, their specific impact on transcription and mRNA decay has not been thoroughly assessed. Here, we use TimeLapse sequencing to investigate how translational stress impacts mRNA dynamics in human cells. Our results reveal that a distinct group of transcripts is stabilized in response to the translation elongation inhibitor emetine. These stabilized mRNAs are short-lived at steady state, and many of them encode C2H2 zinc finger proteins. The codon usage of these stabilized transcripts is suboptimal compared to other expressed transcripts, including other short-lived mRNAs that are not stabilized after emetine treatment. Finally, we show that stabilization of these transcripts is independent of ribosome quality control factors and signaling pathways activated by ribosome collisions. Our data describe a group of short-lived transcripts whose degradation is particularly sensitive to the inhibition of translation elongation.
Site-blocking antisense oligonucleotides as a mechanism to fine-tune MeCP2 expression
Rett syndrome (RTT) is a neurodevelopmental disorder caused by loss-of-function mutations in the () gene. Despite its severe phenotypes, studies in mouse models suggest that restoring MeCP2 levels can reverse RTT symptomology. Nevertheless, traditional gene therapy approaches are hindered by MeCP2's narrow therapeutic window, complicating the safe delivery of viral constructs without overshooting the threshold for toxicity. The 3' untranslated region (3' UTR) plays a key role in gene regulation, where factors like miRNAs bind to pre-mRNA and fine-tune expression. Given that each miRNA's contribution is modest, blocking miRNA binding may represent a potential therapeutic strategy for diseases with high dosage sensitivity, like RTT. Here, we present a series of site-blocking antisense oligonucleotides (sbASOs) designed to outcompete repressive miRNA binding at the 3' UTR. This strategy aims to increase MeCP2 levels in patients with missense or late-truncating mutations, where the hypomorphic nature of the protein can be offset by enhanced abundance. Our results demonstrate that sbASOs can elevate MeCP2 levels in a dose-dependent manner in SH-SY5Y and patient fibroblast cell lines, plateauing at levels projected to be safe. Confirming in vivo functionality, sbASO administration in wild-type mice led to significant Mecp2 upregulation and the emergence of phenotypes associated with Mecp2 overexpression. In a T158M neural stem cell model of RTT, sbASO treatment significantly increased MeCP2 expression and levels of the downstream effector protein brain-derived neurotrophic factor (BDNF). These findings highlight the potential of sbASO-based therapies for MeCP2-related disorders and advocate for their continued development.
Conserved role for spliceosomal component PRPF40A in microexon splicing
Microexons (exons ≤30 nts) are important features of neuronal transcriptomes, but pose mechanistic challenges to the splicing machinery. We previously showed that PRP-40, a component of the U1 spliceosome, is globally required for microexon splicing in C. elegans. Here we show that the homologous PRPF40A is also globally required for microexon splicing in mouse neuroblastoma cells. We find that PRPF40A co-regulates microexons along with SRRM4, a neuron-specific regulator of microexon splicing. The relationship between exon size and dependence on PRPF40A/SRRM4 is distinct, with SRRM4-dependence exhibiting a size threshold (~30 nts) and PRPF40A-dependence exhibiting a graded decrease as exon size increases. Finally, we show that PRPF40A knockdown causes an increase in productive splicing of its spliceosomal binding partner Luc7l by skipping of a small poison exon. Similar homeostatic cross-regulation is often observed across paralogous RNA binding proteins. Here we find this concept likewise applies across evolutionarily unrelated but functionally and physically coupled spliceosomal components.
Investigating the role of RNA-binding protein Ssd1 in aneuploidy tolerance through network analysis
RNA-binding proteins (RBPs) play critical cellular roles by mediating various stages of RNA life cycles. Ssd1, an RBP with pleiotropic effects, has been implicated in aneuploidy tolerance in Saccharomyces cerevisiae but its mechanistic role remains unclear. Here we used a network-based approach to inform on Ssd1's role in aneuploidy tolerance, by identifying and experimentally perturbing a network of RBPs that share mRNA targets with Ssd1. We identified RBPs whose bound mRNA targets significantly overlap with Ssd1 targets. For 14 identified RBPs, we then used a genetic approach to generate all combinations of genotypes for euploid and aneuploid yeast with an extra copy of chromosome XII, with and without SSD1 and/or the RBP of interest. Deletion of 10 RBPs either exacerbated or alleviated the sensitivity of wild-type and/or ssd1∆ cells to chromosome XII duplication, in several cases indicating genetic interactions with SSD1 in the context of aneuploidy. We integrated these findings with results from a global over-expression screen that identified genes whose duplication complements ssd1∆ aneuploid sensitivity. The resulting network points to a sub-group of proteins with shared roles in translational repression and p-body formation, implicating these functions in aneuploidy tolerance. Our results reveal a role for new RBPs in aneuploidy tolerance and support a model in which Ssd1 mitigates translation-related stresses in aneuploid cells.
Quantification of influenza virus mini viral RNAs using Cas13
Influenza A virus (IAV) RNA synthesis produces full-length and deletion-containing RNA molecules, which include defective viral genomes (DVG) and mini viral RNAs (mvRNA). Sequencing approaches have shown that DVG and mvRNA species may be present during infection, and that they can vary in size, segment origin, and sequence. Moreover, a subset of aberrant RNA molecules can bind and activate host pathogen receptor retinoic acid-inducible gene I (RIG-I), leading to innate immune signaling and the expression of type I and III interferons. Measuring the kinetics and distribution of these immunostimulatory aberrant RNA sequences is important for understanding their function in IAV infection. Here, we explored if IAV mvRNA molecules can be detected and quantified using amplification-free, CRISPR-LbuCas13a-based detection. We show that CRISPR-LbuCas13a can be used to measure the copy numbers of specific mvRNAs in samples from infected tissue culture cells. However, to efficiently detect mvRNAs in other samples, promiscuous CRISPR guide RNAs are required that activate LbuCas13a in the presence of multiple mvRNA sequences. One crRNA was able to detect full-length IAV segment 5 without amplification, allowing it to be used for general IAV infection detection nasopharyngeal swabs. Using CRISPR-LbuCas13a, we confirm that mvRNAs are present in ferret upper and lower respiratory tract tissue, as well as clinical nasopharyngeal swab extracts of hospitalized patients. Overall, CRISPR-LbuCas13a-based RNA detection is a useful tool for studying deletion-containing viral RNAs and it complements existing amplification-based approaches.
An internal loop region is responsible for inherent target specificity of bacterial Cold-shock proteins
Cold shock proteins (Csps), of around 70 amino acids, share a protein fold for the cold shock domain (CSD) that contains RNA binding motifs, RNP1 and RNP2, and constitute one family of bacterial RNA-binding proteins. Despite similar amino acid composition, Csps have been shown to individually possess inherent specific functions. Here we identify the molecular differences in Csps that allow selective recognition of RNA targets. Using chimeras and mutants of Escherichia coli CspD and CspA, we demonstrate that Lys43-Ala44 in an internal loop of CspD and the N-terminal portion with Lys4 of CspA are important for determining their target specificities. Pull-down assays suggest these distinct specificities reflect differences in the ability to act on the target RNAs rather than differences in binding to the RNA targets. A phylogenetic tree constructed from 1,573 Csps reveals that the Csps containing Lys-Ala in the loop form a monophyletic clade, and the members in this clade are shown to have target specificities similar to E. coli CspD. The phylogenetic tree also finds a small cluster of Csps containing Lys-Glu in the loop, and these exhibit different specificity than E. coli CspD. Examination of this difference suggests a role of the loop of CspD type proteins in recognition of specific targets. Additionally, each identified type of Csp shows a different distribution pattern among bacteria. Our findings provide a basis for subclassification of Csps based on target RNA specificity, which will be useful for understanding of the functional specialization of Csps.
Widespread destabilization of microRNAs by the E3 ubiquitin ligase EBAX-1
MicroRNAs (miRNAs) associate with Argonaute (AGO) proteins to form complexes that direct mRNA repression. miRNAs are also the subject of regulation. For example, some miRNAs are destabilized through a pathway in which pairing to specialized transcripts recruits the ZSWIM8 E3 ubiquitin ligase, which polyubiquitinates AGO, leading to its degradation and exposure of the miRNA to cellular nucleases. Here, we found that 22 miRNAs in are sensitive to loss of EBAX-1, the ZSWIM8 ortholog in nematodes, implying that these 22 miRNAs might be subject to this pathway of target-directed miRNA degradation (TDMD). The impact of EBAX-1 depended on the developmental stage, with the greatest effect on the miRNA pool (14.5%) observed in L1 larvae and the greatest number of different miRNAs affected (17) observed in germline-depleted adults. The affected miRNAs included the miR-35-42 family, as well as other miRNAs among the least stable in the worm, suggesting that TDMD is a major miRNA destabilization pathway in the worm. The excess miR-35-42 molecules that accumulated in mutants caused increased repression of their predicted target mRNAs and underwent 3' trimming over time. In general, however, miRNAs sensitive to EBAX-1 loss had no consistent pattern of either trimming or tailing. Replacement of the 3' region of miR-43 substantially reduced EBAX-1 sensitivity, a result that differed from that observed previously for miR-35. Together, these findings broaden the implied biological scope of TDMD-like regulation of miRNA stability in animals, and indicate that a role for miRNA 3' sequences is variable in the worm.
Template switching enables chemical probing of native RNA structures
RNAs are often studied in non-native sequence contexts to facilitate structural studies. However, seemingly innocuous changes to an RNA sequence may perturb the native structure and generate inaccurate or ambiguous structural models. To facilitate the investigation of native RNA secondary structure by selective 2' hydroxyl acylation analyzed by primer extension (SHAPE), we engineered an approach that couples minimal enzymatic steps to RNA chemical probing and mutational profiling (MaP) reverse transcription (RT) methods - a process we call template switching and mutational profiling (Switch-MaP). In Switch-MaP, RT templates and additional library sequences are added post-probing through ligation and template switching, capturing reactivities for every nucleotide. For a candidate SAM-I riboswitch, we compared RNA structure models generated by the Switch-MaP approach to those of traditional primer-based MaP, including RNAs with or without appended structure cassettes. Primer-based MaP masked reactivity data in the 5' and 3' ends of the RNA, producing ambiguous ensembles inconsistent with the conserved SAM-I riboswitch secondary structure. Structure cassettes enabled unambiguous modeling of an aptamer-only construct but introduced non-native interactions in the full length riboswitch. In contrast, Switch-MaP provided reactivity data for all nucleotides in each RNA and enabled unambiguous modeling of secondary structure, consistent with the conserved SAM-I fold. Switch-MaP is a straightforward alternative approach to primer-based and cassette-based chemical probing methods that precludes primer masking and the formation of alternative secondary structures due to non-native sequence elements.
RNA fold prediction by Monte Carlo in graph space and the statistical mechanics of tertiary interactions
Using a graph representation of RNA structures, we have studied the ensembles of secondary and tertiary graphs two sets of RNA with Monte Carlo simulations. The first consisted of 91 target ribozyme and riboswitch sequences of moderate lengths (< 150 nt) having a variety of secondary, H-type pseudoknots and kissing loop interactions. The second set consisted of 71 more diverse sequences across many RNA families. Using a simple empirical energy model for tertiary interactions and only sequence information for each target as input, the simulations examined how tertiary interactions impact the statistical mechanics of the fold ensembles. The results show that the graphs proliferate enormously when tertiary interactions are possible, producing an entropic driving force for the ensemble to access folds having tertiary structures even though they are overall energetically unfavorable in the energy model. For each of the targets in the two test sets, we assessed the quality of the model and the simulations by examining how well the simulated structures were able to predict the native fold and compared the results to fold predictions from ViennaRNA. Our model generated good or excellent predictions in a large majority of the targets. Overall, this method was able to produce predictions of comparable quality to Vienna, but it outperformed Vienna for structures with H-type pseudoknots. The results suggest that while tertiary interactions are predicated on real-space contacts, their impacts on the folded structure of RNA can be captured by graph space information for sequences of moderate lengths, using a simple tertiary energy model for the loops, the base pairs and base stacks.
The oligonucleotides containing N7-regioisomer of guanosine. Influence on thermodynamic properties and structure of RNA duplexes
During chemical synthesis of the purine riboside, the N7-regioisomer is kinetically formed whereas the N9-regioisomer is a thermodynamically formed product. We have studied the effect of substituting the N9-regioisomer of guanosine with its N7-regioisomer (N7-guanosine, 7G) at a central position of several RNA duplexes. We found that this single substitution by 7G severely diminished their thermodynamic stabilities when 7G paired with C and U, but remarkably, led to a significant amount of stabilization in most of the duplexes when forming mismatches with G and A. The extent of stabilization was observed to be dependent on the sequence and orientation of neighboring base pairs of N7-guanosine. 1D and 2D NMR studies on the duplexes along with extensive molecular dynamics simulations revealed the conformational differences occurring due to substitution of G by 7G and it was observed that the thermodynamic results were largely explainable by considering the formation of stable non-canonical hydrogen bonding interactions, although other interactions such as stacking and electrostatic interactions could also play a role. These observations can have important applications in the design of RNA-based disease diagnostics and therapeutics.
Bioinformatics-Driven Refinement of the Commonly Used TPI Nonsense-Mediated Decay Reporter System
The cellular nonsense-mediated decay (NMD) pathway recognizes and degrades mRNAs with unusual structural features, such as long 3' UTRs or overlapping reading frames, and therefore serves as a transcript quality control mechanism. A broad spectrum of today's knowledge about the nonsense-mediated mRNA decay pathway has been discovered using NMD reporter systems, mostly consisting of multiple exons, with a wild type (WT) and a premature termination codon (PTC) containing variant. In a preliminary NMD study, we used the seven-exon triose phosphate isomerase (TPI) reporter and observed that in this well-known NMD reporter, surprisingly, not all splice sites are used constitutively, but additional cryptic splice sites are used. As this is more frequently observed in the construction of minigenes, especially when unknown splicing regulatory elements are removed, e.g. by shortening introns, this may affect the reliability of such reporters. To demonstrate how such minigenes can be improved in general with respect to constitutive splice site recognition, we restored an intron length in the TPI reporter or made bioinformatic adjustments to splice regulatory elements (SREs) or intrinsic strength of the splice sites themselves. As a result, this NMD reporter could be made more robust and specific for the evaluation of NMD sensitivity within a single transcript. The modifications of the TPI reporter shown here as examples can generally be used for the transfer of cellular multiexon transcripts to minigenes.
Development of bioconjugate-based delivery systems for nucleic acids
Nucleic acids are a class of drugs that can modulate gene and protein expression by various mechanisms, namely, RNAi, mRNA degradation by RNase H cleavage, splice modulation, and steric blocking of protein binding or mRNA translation, thus exhibiting immense potential to treat various genetic and rare diseases. Unlike protein-targeted therapeutics, the clinical use of nucleic acids relies on Watson-Crick sequence recognition to regulate aberrant gene expression and impede protein translation. Though promising, targeted delivery remains a bottleneck for the clinical adoption of nucleic acid-based therapeutics. To overcome the delivery challenges associated with nucleic acids, various chemical modifications and bioconjugation-based delivery strategies have been explored. Currently, liver targeting by N-acetyl galactosamine (GalNAc) conjugation has been at the forefront for the treatment of rare and various metabolic diseases, which has led to FDA approval of four nucleic acid drugs. In addition, various other bioconjugation strategies have been explored to facilitate active organ and cell-enriched targeting. This review briefly covers the different classes of nucleic acids, their mechanisms of action, and their challenges. We also elaborate on recent advances in bioconjugation strategies in developing a diverse set of ligands for targeted delivery of nucleic acid drugs.