COMBUSTION AND FLAME

Air Humidity Influence on Combustion of R-1234yf (CFCFCH), R-1234ze(E) (trans-CFCHCHF) and R-134a (CHFCF) Refrigerants
Babushok VI and Linteris GT
The influence of air humidity on flame propagation in mixtures of hydrofluorocarbons (HFCs) with air was studied through numerical simulations and comparison with measurements from the literature. Water vapor added to the air in mixtures of fluorine rich hydrofluorocarbons (F/H≥1) can be considered as a fuel additive that increases the production of radicals (H, O, OH) and increases the overall reaction rate. The hydrofluorocarbon flame is typically a two-stage reaction proceeding with a relatively fast reaction in the first stage transitioning to a very slow reaction in the second stage which leads to the combustion equilibrium products. The transition to the second stage is determined by the consumption of hydrogen-containing species and formation of HF. Despite a relatively small effect of water on the adiabatic combustion temperature, its influence is significant on the reaction rate and on the temperature increase in the first stage of the combustion leading to the increase in burning velocity. The main reaction for converting HO to hydrogen-containing radicals and promoting combustion is HO+F=HF+OH, as demonstrated by reaction path analyses for the fluorine rich hydrofluorocarbons R-1234yf, R-1234ze(E), and R-134a (F/H = 2). The calculated burning velocity dependence on the equivalence ratio agrees reasonably well with available experimental measurements for R1234yf and R-1234ze(E) with and without the addition of water vapor. In agreement with experimental data, with water vapor, the maximum of burning velocity over is shifted to the lean mixtures (near = 0.8).
COVID-19_ad_210x280.pdf
The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis
Li H, Pokhrel S, Schowalter M, Rosenauer A, Kiefer J and Mädler L
Tin dioxide (SnO) nanoparticles synthesized flame spray pyrolysis (FSP) have promising applications for gas sensors. The formation of SnO nanoparticles in the gas-phase has been investigated using single droplet combustion and FSP. Precursor solutions of Tin (II) 2-ethylhexanoate dissolved in Xylene with varying Sn concentrations were selected as the precursor-solvent system. The selected precursor-solvent system has its stability and ability to synthesize homogeneous nanoparticles, compared to metal nitrate based precursor solutions. The precursor-solvent system was studied using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and thermogravimetric analysis (TGA). The SnO nanoparticles were characterized using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and transmission electron microscopy (TEM). Droplet surface micro-explosions were observed during the single droplet combustion of the precursor solutions. It is because of the heterogeneous vapor-phase nucleation, which is beneath the liquid droplet surface and caused by precursor thermal decomposition. The results show that the size of nanoparticles obtained both from FSP and single droplet combustion increases with increasing metal-precursor concentration. The TEM images of the particles from such droplet combustion reveal two types of nanoparticles with different sizes and morphologies. The current work provides fundamental understanding of precursor decomposition and particle formation during single droplet combustion, which help in-depth understanding of the flame spray pyrolysis.
Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine
Cadrazco M, Santamaría A, Jaramillo IC, Kaur K, Kelly KE and Agudelo JR
Particulate matter coming from the combustion of renewable diesel (RD), ultra-low sulfur diesel (ULSD) and a volumetric blend of 30% of RD with ULSD (RD30) were collected and physico-chemically characterized. Soot samples were generated in two flame burner types (non-premixed flame, NPF, and partially premixed flame, PPF) trying to simulate the diffusion and premix regimes found in diesel engines. The impact of both fuel nature and burner type was assessed on soot mass, particle size and morphology, particle nanostructure and surface functional groups. In general, although the results of HRTEM and SMPS suggested that the addition of RD reduced the average particle size and increased the concentration of ultra-fine particles, the mass emission of soot was drastically mitigated regardless of the burner used. The results also suggest that the changes in the chemical characteristics of the soot were slightly more sensitive than the changes in the internal nanostructure of the particles, since the graphitic character (as showed by Raman and infrared analysis) increased as the RD content increased, being stronger for the PPF system. Comparisons between engine soot and flame soot confirmed that the addition of RD into ULSD produced smaller and more carbonized particles. In fact, some engine results were located in between those obtained in PPF and NPF burners, suggesting that both combustion regimes are contributing to soot characteristics in engines. This consistency suggests that a first assessment of the impact of alternative fuels on the characteristics of particulate matter can be conducted through the basic approach offered by laboratory flames, thereby avoiding the costs associated with generating large quantities of fuel and the complexities of in-cylinder physical interactions and engine parameters.
X-ray Computed Tomography for Flame-Structure Analysis of Laminar Premixed Flames
Boigné E, Muhunthan P, Mohaddes D, Wang Q, Sobhani S, Hinshaw W and Ihme M
Quantitative X-ray computed tomography (XCT) diagnostics for reacting flows are developed and demonstrated in application to premixed flames in open and optically inaccessible geometries. A laboratory X-ray scanner is employed to investigate methane/air flames that were diluted with krypton as an inert radiodense tracer gas. Effects of acquisition rate and tracer gas concentration on the signal-to-noise ratio are examined. It is shown that statistically converged three-dimensional attenuation measurements can be obtained with limited impact from the tracer gas and within an acceptable acquisition time. Specific aspects of the tomographic reconstruction and the experimental procedure are examined, with particular emphasis on the quantification of experimental uncertainties. A method is developed to determine density and temperature from the X-ray attenuation measurements. These experiments are complemented by one- and multi-dimensional calculations to quantify the influence of krypton on the flame behavior. To demonstrate the merit of XCT for optically inaccessible flames, measurements of a complex flame geometry in a tubular confinement are performed. The use of a coflow to provide a uniform tracer-gas concentration is shown to improve the quantitative temperature evaluation. These measurements demonstrate the viability of XCT for flame-structure analysis and multi-dimensional temperature measurements using laboratory X-ray systems. Further opportunities for improving this diagnostic are discussed.
Buoyancy effects on concurrent flame spread over thick PMMA
Thomsen M, Fernandez-Pello C, Ruff GA and Urban DL
The flammability of combustible materials in a spacecraft is important for fire safety applications because the conditions in spacecraft environments differ from those on earth. Experimental testing in space is difficult and expensive. However, reducing buoyancy by decreasing ambient pressure is a possible approach to simulate on-earth the burning behavior inside spacecraft environments. The objective of this work is to determine that possibility by studying the effect of pressure on concurrent flame spread, and by comparison with microgravity data, observe up to what point low-pressure can be used to replicate flame spread characteristics observed in microgravity. Specifically, this work studies the effect of pressure and microgravity on upward/concurrent flame spread over 10 mm thick polymethyl methacrylate (PMMA) slabs. Experiments in normal gravity were conducted over pressures ranging between 100 and 40 kPa and a forced flow velocity of 200 mm/s. Microgravity experiments were conducted during NASA's Spacecraft Fire Experiment (Saffire II), on board the Cygnus spacecraft at 100 kPa with an air flow velocity of 200 mm/s. Results show that reductions of pressure slow down the flame spread over the PMMA surface approaching that in microgravity. The data is correlated in terms of a non-dimensional mixed convection analysis that describes the convective heat transferred from the flame to the solid, and the primary mechanism controlling the spread of the flame. The extrapolation of the correlation to low pressures predicts well the flame spread rate obtained in microgravity in the Saffire II experiments. Similar results were obtained by the authors with similar experiments with a thin composite cotton/fiberglass fabric (published elsewhere). Both results suggest that reduced pressure can be used to approximately replicate flame behavior of untested gravity conditions for the burning of thick and thin solids. This work could provide guidance for potential ground-based testing for fire safety design in spacecraft and space habitats.
Periodic Partial Extinction in Acoustically Coupled Fuel Droplet Combustion
Bennewitz JW, Valentini D, Plascencia MA, Vargas A, Sim HS, Lopez B, Smith OI and Karagozian AR
This experimental study explored the response of burning liquid fuel droplets to one-dimensional acoustic standing waves created within a closed, atmospheric waveguide. Building upon prior droplet combustion studies quantifying mean and temporal flame response of several alternative fuels to moderate acoustic excitation (Sevilla-Esparza, et al., , 161(6):1604-1619, 2014), the present work focused on higher amplitude acoustic forcing observed to create periodic partial extinction and reignition (PPER) of flames enveloping the droplet. Detailed examination of ethanol droplets exposed to a range of acoustic forcing conditions (frequencies and amplitudes in the vicinity of a pressure node) yielded several different combustion regimes: one with sustained oscillatory flames, one with PPER, and then full extinction at very high excitation amplitudes. Phase-locked OH* chemiluminescence imaging and local temporal pressure measurements allowed quantification of the combustion-acoustic coupling through the local Rayleigh index. Similar behavior was observed for JP-8 and liquid synthetic fuel derived via the Fischer-Tropsch process, but with quantitative differences based on different reaction time scales. Estimates of the mean and oscillatory strain rates experienced by the flames during excitation assisted with interpreting specific relationships among acoustic, chemical, and fluid mechanical/straining time scales that can lead to a greater understanding of PPER.
CO Emission from an Impinging Non-Premixed Flame
Chien YC, Escofet-Martin D and Dunn-Rankin D
Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels. While CO can be desirable in some syngas processes, it is a dangerous emission from fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction prevents complete oxidation of fuel to carbon dioxide and water, particularly when the reaction is interrupted by interaction with relatively cool solid boundaries. This research examines the physico-thermo-chemical processes responsible for carbon monoxide release from a small laminar non-premixed methane/air flame impinging on a nearby surface. We measure the changes in CO emission as correlated with variations in flame structure observed using planar laser induced fluorescence (PLIF of OH and 2-photon CO), and two-line OH PLIF thermometry, as a function of burner-to-plate distance. In particular, this work combines the use of OH and CO PLIF, and PLIF thermometry to describe the relative locations of the CO rich region, the peak heat release zone as indicated by chemiluminescence and OH gradients, and the extended oxidative zone in the impinging flames. The results show that CO release correlates strongly with stagnating flow-driven changes in the location and extent of high concentration regions of OH in surface-impinging diffusion flames.
Chemical kinetic model uncertainty minimization through laminar flame speed measurements
Park O, Veloo PS, Sheen DA, Tao Y, Egolfopoulos FN and Wang H
Laminar flame speed measurements were carried for mixture of air with eight C hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, -butene, -butane, and -butane) at the room temperature and ambient pressure. Along with C hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358-2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C and C alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel.
Potential Explosion Hazard of Carbonaceous Nanoparticles: Screening of Allotropes
Turkevich LA, Fernback J, Dastidar AG and Osterberg P
There is a concern that engineered carbon nanoparticles, when manufactured on an industrial scale, will pose an explosion hazard. Explosion testing has been performed on 20 codes of carbonaceous powders. These include several different codes of SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes) and CNFs (carbon nanofibers), graphene, diamond, fullerene, as well as several different control carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226 protocol), at a concentration of 500 g/m, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples typically exhibited overpressures of 5-7 bar, and deflagration index K = V (dP/dt) ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1. There is minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with primary particle size (BET specific surface area).
Understanding overpressure in the FAA aerosol can test by CHFBr (2-BTP)
Linteris GT, Babushok VI, Pagliaro JL, Burgess DR, Manion JA, Takahashi F, Katta VR and Baker PT
Thermodynamic equilibrium calculations, as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for a potential halon replacement, CHFBr (2-BTP, CHFBr, 2-Bromo-3,3,3-trifluoropropene), to understand the reasons for the unexpected enhanced combustion rather than suppression in a mandated FAA test. The high pressure rise with added agent is shown to depend on the amount of agent, and is well-predicted by an equilibrium model corresponding to stoichiometric reaction of fuel, oxygen, and agent. A kinetic model for the reaction of CHFBr in hydrocarbon-air flames has been applied to understand differences in the chemical suppression behavior of CHFBr vs. CFBr in the FAA test. Stirred-reactor simulations predict that in the conditions of the FAA test, the inhibition effectiveness of CHFBr at high agent loadings is relatively insensitive to the overall stoichiometry (for fuel-lean conditions), and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions. Most important, the flammability of the agent-air mixtures themselves (when compressively preheated), can support low-strain flames which are much more difficult to extinguish than the easy-to extinguish, high-strain primary fireball from the impulsively released fuel mixture. Hence, the exothermic reaction of halogenated hydrocarbons in air should be considered in other situations with strong ignition sources and low strain flows, especially at preheated conditions.
Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part III: 2,5-Dimethylfuran
Togbé C, Tran LS, Liu D, Felsmann D, Oßwald P, Glaude PA, Sirjean B, Fournet R, Battin-Leclerc F and Kohse-Höinghaus K
This work is the third part of a study focusing on the combustion chemistry and flame structure of furan and selected alkylated derivatives, i.e. furan in Part I, 2-methylfuran (MF) in Part II, and 2,5-dimethylfuran (DMF) in the present work. Two premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of DMF were studied with electron-ionization molecular-beam mass spectrometry (EI-MBMS) and gas chromatography (GC) under two equivalence ratios (φ=1.0 and 1.7). Mole fractions of reactants, products, and stable and radical intermediates were measured as a function of the distance to the burner. Kinetic modeling was performed using a reaction mechanism that was further developed in the present series, including Part I and Part II. A reasonable agreement between the present experimental results and the simulation is observed. The main reaction pathways of DMF consumption were derived from a reaction flow analysis. Also, a comparison of the key features for the three flames is presented, as well as a comparison between these flames of furanic compounds and those of other fuels. An a priori surprising ability of DMF to form soot precursors (e.g. 1,3-cyclopentadiene or benzene) compared to less substituted furans and to other fuels has been experimentally observed and is well explained in the model.
Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part II: 2-Methylfuran
Tran LS, Togbé C, Liu D, Felsmann D, Oßwald P, Glaude PA, Fournet R, Sirjean B, Battin-Leclerc F and Kohse-Höinghaus K
This is Part II of a series of three papers which jointly address the combustion chemistry of furan and its alkylated derivatives 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) under premixed low-pressure flame conditions. Some of them are considered to be promising biofuels. With furan as a common basis studied in Part I of this series, the present paper addresses two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of MF which were studied with electron-ionization molecular-beam mass spectrometry (EI-MBMS) and gas chromatography (GC) for equivalence ratios φ=1.0 and 1.7, identical conditions to those for the previously reported furan flames. Mole fractions of reactants, products as well as stable and reactive intermediates were measured as a function of the distance above the burner. Kinetic modeling was performed using a comprehensive reaction mechanism for all three fuels given in Part I and described in the three parts of this series. A comparison of the experimental results and the simulation shows reasonable agreement, as also seen for the furan flames in Part I before. This set of experiments is thus considered to be a valuable additional basis for the validation of the model. The main reaction pathways of MF consumption have been derived from reaction flow analyses, and differences to furan combustion chemistry under the same conditions are discussed.
Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part I: Furan
Liu D, Togbé C, Tran LS, Felsmann D, Oßwald P, Nau P, Koppmann J, Lackner A, Glaude PA, Sirjean B, Fournet R, Battin-Leclerc F and Kohse-Höinghaus K
Fuels of the furan family, i.e. furan itself, 2-methylfuran (MF), and 2,5-dimethylfuran (DMF) are being proposed as alternatives to hydrocarbon fuels and are potentially accessible from cellulosic biomass. While some experiments and modeling results are becoming available for each of these fuels, a comprehensive experimental and modeling analysis of the three fuels under the same conditions, simulated using the same chemical reaction model, has - to the best of our knowledge - not been attempted before. The present series of three papers, detailing the results obtained in flat flames for each of the three fuels separately, reports experimental data and explores their combustion chemistry using kinetic modeling. The first part of this series focuses on the chemistry of low-pressure furan flames. Two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of furan were studied at two equivalence ratios (φ=1.0 and 1.7) using an analytical combination of high-resolution electron-ionization molecular-beam mass spectrometry (EI-MBMS) in Bielefeld and gas chromatography (GC) in Nancy. The time-of-flight MBMS with its high mass resolution enables the detection of both stable and reactive species, while the gas chromatograph permits the separation of isomers. Mole fractions of reactants, products, and stable and radical intermediates were measured as a function of the distance to the burner. A single kinetic model was used to predict the flame structure of the three fuels: furan (in this paper), 2-methylfuran (in Part II), and 2,5-dimethylfuran (in Part III). A refined sub-mechanism for furan combustion, based on the work of Tian et al. [Combustion and Flame 158 (2011) 756-773] was developed which was then compared to the present experimental results. Overall, the agreement is encouraging. The main reaction pathways involved in furan combustion were delineated computing the rates of formation and consumption of all species. It is seen that the predominant furan consumption pathway is initiated by H-addition on the carbon atom neighboring the O-atom with acetylene as one of the dominant products.
Paramagnetic centers in particulate formed from the oxidative pyrolysis of 1-methylnaphthalene in the presence of Fe(III)O nanoparticles
Herring P, Khachatryan L, Lomnicki S and Dellinger B
The identity of radical species associated with particulate formed from the oxidative pyrolysis of 1-methylnaphthalene (1-MN) was investigated using low temperature matrix isolation electron paramagnetic resonance spectroscopy (LTMI-EPR), a specialized technique that provided a method of sampling and analysis of the gas-phase paramagnetic components. A superimposed EPR signal was identified to be a mixture of organic radicals (carbon and oxygen-centered) and soot. The carbon-centered radicals were identified as a mixture of the resonance-stabilized indenyl, cyclopentadienyl, and naphthalene 1-methylene radicals through the theoretical simulation of the radical's hyperfine structure. Formation of these radical species was promoted by the addition of Fe(III)O nanoparticles. Enhanced formation of resonance stabilized radicals from the addition of Fe(III)O nanoparticles can account for the observed increased sooting tendency associated with Fe(III)O nanoparticle addition.
An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane
Serinyel Z, Herbinet O, Frottier O, Dirrenberger P, Warth V, Glaude PA and Battin-Leclerc F
The experimental study of the oxidation of cyclohexane has been performed in a jet-stirred reactor at temperatures ranging from 500 to 1100 K (low- and intermediate temperature zones including the negative temperature-coefficient area), at a residence time of 2 s and for dilute mixtures with equivalence ratios of 0.5, 1, and 2. Experiments were carried out at quasi-atmospheric pressure (1.07 bar). The fuel and reaction product mole fractions were measured using online gas chromatography. A total of 34 reaction products have been detected and quantified in this study. Typical reaction products formed in the low-temperature oxidation of cyclohexane include cyclic ethers (1,2-epoxycyclohexane and 1,4-epoxycyclohexane), 5-hexenal (formed from the rapid decomposition of 1,3-epoxycyclohexane), cyclohexanone, and cyclohexene, as well as benzene and phenol. Cyclohexane displays high low-temperature reactivity with well-marked negative temperature-coefficient (NTC) behavior at equivalence ratios 0.5 and 1. The fuel-rich system (ϕ = 2) is much less reactive in the same region and exhibits no NTC. To the best of our knowledge, this is the first jet-stirred reactor study to report NTC in cyclohexane oxidation. Laminar burning velocities were also measured by the heated burner method at initial gas temperatures of 298, 358, and 398 K and at 1 atm. The laminar burning velocity values peak at ϕ = 1.1 and are measured as 40 and 63.1 cm/s for T = 298 and 398 K, respectively. An updated detailed chemical kinetic model including low-temperature pathways was used to simulate the present (jet-stirred reactor and laminar burning velocity) and literature experimental (laminar burning velocity, rapid compression machine, and shock tube ignition delay times) data. Reasonable agreement is observed with most of the products observed in our reactor, as well as the literature experimental data considered in this paper.
A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation
Somers KP, Simmie JM, Gillespie F, Conroy C, Black G, Metcalfe WK, Battin-Leclerc F, Dirrenberger P, Herbinet O, Glaude PA, Dagaut P, Togbé C, Yasunaga K, Fernandes RX, Lee C, Tripathi R and Curran HJ
The pyrolytic and oxidative behaviour of the biofuel 2,5-dimethylfuran (25DMF) has been studied in a range of experimental facilities in order to investigate the relatively unexplored combustion chemistry of the title species and to provide combustor relevant experimental data. The pyrolysis of 25DMF has been re-investigated in a shock tube using the single-pulse method for mixtures of 3% 25DMF in argon, at temperatures from 1200-1350 K, pressures from 2-2.5 atm and residence times of approximately 2 ms. Ignition delay times for mixtures of 0.75% 25DMF in argon have been measured at atmospheric pressure, temperatures of 1350-1800 K at equivalence ratios () of 0.5, 1.0 and 2.0 along with auto-ignition measurements for stoichiometric fuel in air mixtures of 25DMF at 20 and 80 bar, from 820-1210 K. This is supplemented with an oxidative speciation study of 25DMF in a jet-stirred reactor (JSR) from 770-1220 K, at 10.0 atm, residence times of 0.7 s and at = 0.5, 1.0 and 2.0. Laminar burning velocities for 25DMF-air mixtures have been measured using the heat-flux method at unburnt gas temperatures of 298 and 358 K, at atmospheric pressure from = 0.6-1.6. These laminar burning velocity measurements highlight inconsistencies in the current literature data and provide a validation target for kinetic mechanisms. A detailed chemical kinetic mechanism containing 2768 reactions and 545 species has been simultaneously developed to describe the combustion of 25DMF under the experimental conditions described above. Numerical modelling results based on the mechanism can accurately reproduce the majority of experimental data. At high temperatures, a hydrogen atom transfer reaction is found to be the dominant unimolecular decomposition pathway of 25DMF. The reactions of hydrogen atom with the fuel are also found to be important in predicting pyrolysis and ignition delay time experiments. Numerous proposals are made on the mechanism and kinetics of the previously unexplored intermediate temperature combustion pathways of 25DMF. Hydroxyl radical addition to the furan ring is highlighted as an important fuel consuming reaction, leading to the formation of methyl vinyl ketone and acetyl radical. The chemically activated recombination of HȮ or CHȮ with the 5-methyl-2-furanylmethyl radical, forming a 5-methyl-2-furylmethanoxy radical and ȮH or CHȮ radical is also found to exhibit significant control over ignition delay times, as well as being important reactions in the prediction of species profiles in a JSR. Kinetics for the abstraction of a hydrogen atom from the alkyl side-chain of the fuel by molecular oxygen and HȮ radical are found to be sensitive in the estimation of ignition delay times for fuel-air mixtures from temperatures of 820-1200 K. At intermediate temperatures, the resonantly stabilised 5-methyl-2-furanylmethyl radical is found to predominantly undergo bimolecular reactions, and as a result sub-mechanisms for 5-methyl-2-formylfuran and 5-methyl-2-ethylfuran, and their derivatives, have also been developed with consumption pathways proposed. is the first to attempt to simulate the combustion of these species in any detail, although future refinements are likely necessary. The current study illustrates both quantitatively and qualitatively the complex chemical behavior of what is a high potential biofuel. Whilst the current work is the most comprehensive study on the oxidation of 25DMF in the literature to date, the mechanism cannot accurately reproduce laminar burning velocity measurements over a suitable range of unburnt gas temperatures, pressures and equivalence ratios, although discrepancies in the experimental literature data are highlighted. Resolving this issue should remain a focus of future work.
Experimental and modeling investigation of the low-temperature oxidation of -heptane
Herbinet O, Husson B, Serinyel Z, Cord M, Warth V, Fournet R, Glaude PA, Sirjean B, Battin-Leclerc F, Wang Z, Xie M, Cheng Z and Qi F
The low-temperature oxidation of -heptane, one of the reference species for the octane rating of gasoline, was investigated using a jet-stirred reactor and two methods of analysis: gas chromatography and synchrotron vacuum ultra-violet photo-ionization mass spectrometry (SVUV-PIMS) with direct sampling through a molecular jet. The second method allowed the identification of products, such as molecules with hydroperoxy functions, which are not stable enough to be detected using gas chromatography. Mole fractions of the reactants and reaction products were measured as a function of temperature (500-1100K), at a residence time of 2s, at a pressure of 800 torr (1.06 bar) and at stoichiometric conditions. The fuel was diluted in an inert gas (fuel inlet mole fraction of 0.005). Attention was paid to the formation of reaction products involved in the low temperature oxidation of -heptane, such as olefins, cyclic ethers, aldehydes, ketones, species with two carbonyl groups (diones) and ketohydroperoxides. Diones and ketohydroperoxides are important intermediates in the low temperature oxidation of n-alkanes but their formation have rarely been reported. Significant amounts of organic acids (acetic and propanoic acids) were also observed at low temperature. The comparison of experimental data and profiles computed using an automatically generated detailed kinetic model is overall satisfactory. A route for the formation of acetic and propanoic acids was proposed. Quantum calculations were performed to refine the consumption routes of ketohydroperoxides towards diones.
Experimental and modeling study of the thermal decomposition of methyl decanoate
Herbinet O, Glaude PA, Warth V and Battin-Leclerc F
The experimental study of the thermal decomposition of methyl decanoate was performed in a jet-stirred reactor at temperatures ranging from 773 to 1123 K, at residence times between 1 and 4 s, at a pressure of 800 Torr (106.6 kPa) and at high dilution in helium (fuel inlet mole fraction of 0.0218). Species leaving the reactor were analyzed by gas chromatography. Main reaction products were hydrogen, carbon oxides, small hydrocarbons from C to C, large 1-olefins from 1-butene to 1-nonene, and unsaturated esters with one double bond at the end of the alkyl chain from methyl-2-propenoate to methyl-8-nonenoate. At the highest temperatures, the formation of polyunsaturated species was observed: 1,3-butadiene, 1,3-cyclopentadiene, benzene, toluene, indene, and naphthalene. These results were compared with previous ones about the pyrolysis of n-dodecane, an n-alkane of similar size. The reactivity of both molecules was found to be very close. The alkane produces more olefins while the ester yields unsaturated oxygenated compounds. A detailed kinetic model for the thermal decomposition of methyl decanoate has been generated using the version of software EXGAS which was updated to take into account the specific chemistry involved in the oxidation of methyl esters. This model contains 324 species and 3231 reactions. It provided a very good prediction of the experimental data obtained in jet-stirred reactor. The formation of the major products was analyzed. The kinetic analysis showed that the retro-ene reactions of intermediate unsaturated methyl esters are of importance in low reactivity systems.
An experimental and kinetic investigation of premixed furan/oxygen/argon flames
Tian Z, Yuan T, Fournet R, Glaude PA, Sirjean B, Battin-Leclerc F, Zhang K and Qi F
The detailed chemical structures of three low-pressure (35 Torr) premixed laminar furan/oxygen/argon flames with equivalence ratios of 1.4, 1.8 and 2.2 have been investigated by using tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry. About 40 combustion species including hydrocarbons and oxygenated intermediates have been identified by measurements of photoionization efficiency spectra. Mole fraction profiles of the flame species including reactants, intermediates and products have been determined by scanning burner position with some selected photon energies near ionization thresholds. Flame temperatures have been measured by a Pt-6%Rh/Pt-30%Rh thermocouple. A new mechanism involving 206 species and 1368 reactions has been proposed whose predictions are in reasonable agreement with measured species profiles for the three investigated flames. Rate-of-production and sensitivity analyses have been performed to track the key reaction paths governing furan consumption for different equivalence ratios. Both experimental and modeling results indicate that few aromatics could be formed in these flames. Furthermore, the current model has been validated against previous pyrolysis results of the literature obtained behind shock waves and the agreement is reasonable as well.
Influence of Hydrocarbon Moiety of DMMP on Flame Propagation in Lean Mixtures
Babushok VI, Linteris GT, Katta VR and Takahashi F
Phosphorus-containing compounds (PCCs) have been found to be significantly more effective than CFBr for reducing burning velocity when added to stoichiometric hydrocarbon-air flames. However, when added to lean flames, DMMP (dimethylmethylphosphonate) is predicted to increase the burning velocity. The addition of DMMP to lean mixtures apparently increases the equivalence ratio (fuel/oxidizer) and the combustion temperature, as a result of hydrocarbon content of DMMP molecule. Premixed flames studies with added DMMP, OP(OH), and CFBr are used to understand the different behavior with varying equivalence ratio and agent loading. Decrease of the equivalence ratio leads to the decrease of inhibition effectiveness of PCCs relative to bromine-containing compounds. For very lean mixtures CFBr becomes more effective inhibitor than PCCs. Calculations of laminar burning velocities for pure DMMP/air mixtures predict the maximum burning velocity of 10.5 cm/s at 4.04 % of DMMP in air and at an initial temperature of 400 K. Adiabatic combustion temperature is 2155 K at these conditions.