Plant neighbourhood diversity effects on leaf traits: A meta-analysis
Leaf traits often vary with plant neighbourhood composition, which in turn may mediate plant susceptibility to herbivory. However, it is unknown whether there are any common patterns of change in leaf trait expression in response to neighbourhood diversity, and whether these responses confer increased resistance or susceptibility to herbivores.We used meta-analysis to combine data from 43 studies that examined the influence of neighbourhood diversity on eight physical and chemical leaf traits that could affect herbivory. All leaf traits apart from leaf thickness were highly plastic and exhibited significant differences between plant monocultures and species mixtures, but the direction of effect was variable. Leaf toughness was the only trait that displayed a significant decrease with plant diversity, whereas specific leaf area (SLA) and leaf nitrogen were both marginally increased in species mixtures.The magnitude and direction of leaf trait responses to neighbourhood diversity were independent of plant density and phylogenetic diversity, but changes in SLA correlated positively with plant species richness. SLA was also significantly increased in experimental studies, but not in observational studies, while neighbourhoods containing nitrogen-fixers were associated with increased leaf nitrogen and reduced phenolics. When studies on the over-represented species were removed from the analysis, the effect of neighbourhood diversity on leaf toughness became nonsignificant, but phenolics were significantly reduced in diverse neighbourhoods composed of mature trees, and marginally reduced in species mixtures across all studies.Increases in plant neighbourhood diversity are often associated with reductions of herbivory, although in some cases, the reverse occurs, and plants growing in species mixtures are found to suffer greater herbivory than those in monocultures. This study offers a potential explanation for the latter phenomenon, as our results show that leaf trait expression is highly plastic in response to neighbourhood diversity, and in certain cases could lead to increased leaf quality, which in turn could promote greater rates of herbivory. Read the free Plain Language Summary for this article on the Journal blog.
Convergent remodelling of the gut microbiome is associated with host energetic condition over long-distance migration
The gut microbiome can be thought of as a virtual organ given its immense metabolic capacity and profound effects on host physiology. Migratory birds are capable of adaptively modulating many aspects of their physiology to facilitate long-distance movements, raising the hypothesis that their microbiome may undergo a parallel remodeling process that helps to meet the energetic demands of migration.To test this hypothesis, we investigated changes in gut microbiome composition and function over the fall migration of the Blackpoll Warbler (), which exhibits one of the longest known autumnal migratory routes of any songbird and rapidly undergoes extensive physiological remodeling during migration.Overall, our results showed that the Blackpoll Warbler microbiome differed significantly across phases of fall migration. This pattern was driven by a dramatic increase in the relative abundance of Proteobacteria, and more specifically a single 16S rRNA gene amplicon sequence variant belonging to the family Enterobacteriaceae. Further, Blackpoll Warblers exhibited a progressive reduction in microbiome diversity and within-group variance over migration, indicating convergence of microbiome composition among individuals during long-distance migration. Metagenomic analysis revealed that the gut microbiome of staging individuals was enriched in bacterial pathways involved in vitamin, amino acid, and fatty acid biosynthesis, as well as carbohydrate metabolism, and that these pathways were in turn positively associated with host body mass and subcutaneous fat deposits.Together, these results provide evidence that the gut microbiome of migratory birds may undergo adaptive remodeling to meet the physiological and energetic demands of long-distance migration.
Helminth-associated changes in host immune phenotype connect top-down and bottom-up interactions during co-infection
1. Within-host parasite interactions can be mediated by the host and changes in host phenotypes often serve as indicators of the presence or intensity of parasite interactions. 2. Parasites like helminths induce a range of physiological, morphological, and immunological changes in hosts that can drive bottom-up (resource-mediated) or top-down (immune-mediated) interactions with co-infecting parasites. Although top-down and bottom-up interactions are typically studied in isolation, the diverse phenotypic changes induced by parasite infection may serve as a useful tool for understanding if, and when, these processes act in concert. 3. Using an anthelmintic treatment study of African buffalo (), we tracked changes in host immunological and morphological phenotypes during helminth-coccidia co-infection to investigate their role in driving independent and combinatorial bottom-up and top-down parasite interactions. We also examined repercussions for host fitness. 4. Clearance of a blood-sucking helminth, , from the host gastrointestinal tract induced a systemic Th2 immune phenotype, while clearance of a tissue-feeding helminth, , induced a systemic Th1 phenotype. Furthermore, the -associated systemic Th2 immune phenotype drove simultaneous top-down and bottom-up effects that increased coccidia shedding by changing the immunological and morphological landscapes of the intestine. 5. Higher coccidia shedding was associated with lower host body condition, a lower chance of pregnancy, and older age at first pregnancy, suggesting that coccidia infection imposed significant condition and reproductive costs on the host. 6. Our findings suggest that top-down and bottom-up interactions may commonly co-occur and that tracking key host phenotypes that change in response to infection can help uncover complex pathways by which parasites interact.
Ecological strategies of (pl)ants: Towards a world-wide worker economic spectrum for ants
Current global challenges call for a rigorously predictive ecology. Our understanding of ecological strategies, imputed through suites of measurable functional traits, comes from decades of work that largely focussed on plants. However, a key question is whether plant ecological strategies resemble those of other organisms.Among animals, ants have long been recognised to possess similarities with plants: as (largely) central place foragers. For example, individual ant workers play similar foraging roles to plant leaves and roots and are similarly expendable. Frameworks that aim to understand plant ecological strategies through key functional traits, such as the 'leaf economics spectrum', offer the potential for significant parallels with ant ecological strategies.Here, we explore these parallels across several proposed ecological strategy dimensions, including an 'economic spectrum', propagule size-number trade-offs, apparency-defence trade-offs, resource acquisition trade-offs and stress-tolerance trade-offs. We also highlight where ecological strategies may differ between plants and ants. Furthermore, we consider how these strategies play out among the different modules of eusocial organisms, where selective forces act on the worker and reproductive castes, as well as the colony.Finally, we suggest future directions for ecological strategy research, including highlighting the availability of data and traits that may be more difficult to measure, but should receive more attention in future to better understand the ecological strategies of ants. The unique biology of eusocial organisms provides an unrivalled opportunity to bridge the gap in our understanding of ecological strategies in plants and animals and we hope that this perspective will ignite further interest. Read the free Plain Language Summary for this article on the Journal blog.
Is species richness mediated by functional and genetic divergence? A global analysis in birds
Unravelling why species richness shows such dramatic spatial variation is an ongoing challenge. Common to many theories is that increasing species richness (e.g. with latitude) requires a compensatory trade-off on an axis of species' ecology. Spatial variation in species richness may also affect genetic diversity if large numbers of coexisting, related species result in smaller population sizes.Here, we test whether increasing species richness results in differential occupation of morphospace by the constituent species, or decreases species' genetic diversity. We test for two potential mechanisms of morphological accommodation: denser packing in ecomorphological space, and expansion of the space. We then test whether species differ in their nucleotide diversity depending on allopatry or sympatry with relatives, indicative of potential genetic consequences of coexistence that would reduce genetic diversity in sympatry. We ask these questions in a spatially explicit framework, using a global database of avian functional trait measurements in combination with >120,000 sequences downloaded from GenBank.We find that higher species richness within families is not systematically correlated with either packing in morphological space or overdispersion but, at the Class level, we find a general positive relationship between packing and species richness, but that points sampled in the tropics have comparatively greater packing than temperate ones relative to their species richness. We find limited evidence that geographical co-occurrence with closely related species or tropical distributions decreases nucleotide diversity of nuclear genes; however, this requires further analysis.Our results suggest that avian families can accumulate species regionally with minimal tradeoffs or cost, implying that external biotic factors do not limit species richness. Read the free Plain Language Summary for this article on the Journal blog.
High-resolution 3D forest structure explains ecomorphological trait variation in assemblages of saproxylic beetles
Climate, topography and the 3D structure of forests are major drivers affecting local species communities. However, little is known about how the specific functional traits of saproxylic (wood-living) beetles, involved in the recycling of wood, might be affected by those environmental characteristics.Here, we combine ecological and morphological traits available for saproxylic beetles and airborne laser scanning (ALS) data in Bayesian trait-based joint species distribution models to study how traits drive the distributions of more than 230 species in temperate forests of Europe.We found that elevation (as a proxy for temperature and precipitation) and the proportion of conifers played important roles in species occurrences while variables related to habitat heterogeneity and forest complexity were less relevant. Furthermore, we showed that local communities were shaped by environmental variation primarily through their ecological traits whereas morphological traits were involved only marginally. As predicted, ecological traits influenced species' responses to forest structure, and to other environmental variation, with canopy niche, wood decay niche and host preference as the most important ecological traits. Conversely, no links between morphological traits and environmental characteristics were observed. Both models, however, revealed strong phylogenetic signal in species' response to environmental characteristics.These findings imply that alterations of climate and tree species composition have the potential to alter saproxylic beetle communities in temperate forests. Additionally, ecological traits help explain species' responses to environmental characteristics and thus should prove useful in predicting their responses to future change. It remains challenging, however, to link simple morphological traits to species' complex ecological niches. Read the free Plain Language Summary for this article on the Journal blog.
Soil carbon storage is related to tree functional composition in naturally regenerating tropical forests
Regenerating tropical forests are increasingly important for their role in the global carbon cycle. Carbon stocks in above-ground biomass can recover to old-growth forest levels within 60-100 years. However, more than half of all carbon in tropical forests is stored below-ground, and our understanding of carbon storage in soils during tropical forest recovery is limited.Importantly, soil carbon accumulation does not necessarily reflect patterns in above-ground biomass carbon accrual during secondary forest succession, and factors related to past land use, species composition and soil characteristics may influence soil carbon storage during forest regrowth.Using tree census data and a measure of tree community shade tolerance (species-specific light response values), we assessed the relationship between soil organic carbon stocks and tree functional groups during secondary succession along a chronosequence of 40- to 120-year-old naturally regenerating secondary forest and old-growth tropical forest stands in Panama.While previous studies found no evidence for increasing soil C storage with secondary forest age, we found a strong relationship between tree functional composition and soil carbon stocks at 0-10 cm depth, whereby carbon stocks increased with the relative influence of light-demanding tree species. Light demanding trees had higher leaf nitrogen but lower leaf density than shade-tolerant trees, suggesting that rapid decomposition of nutrient-rich plant material in forests with a higher proportion of light-demanding species results in greater accumulation of carbon in the surface layer of soils. . We propose that soil carbon storage in secondary tropical forests is more strongly linked to tree functional composition than forest age, and that the persistence of long-lived pioneer trees could enhance soil carbon storage as forests age. Considering shifts in tree functional groups could improve estimates of carbon sequestration potential for climate change mitigation by tropical forest regrowth. Read the free Plain Language Summary for this article on the Journal blog.
Sexual selection moderates heat stress response in males and females
A widespread effect of climate change is the displacement of organisms from their thermal optima. The associated thermal stress imposed by climate change has been argued to have a particularly strong impact on male reproduction but evidence for this postulated sex-specific stress response is equivocal.One important factor that may explain intra- and interspecific variation in stress responses is sexual selection, which is predicted to magnify negative effects of stress. Nevertheless, empirical studies exploring the interplay of sexual selection and heat stress are still scarce.We tested experimentally for an interaction between sexual selection and thermal stress in the red flour beetle by contrasting heat responses in male and female reproductive success between enforced monogamy and polygamy.We found that polygamy magnifies detrimental effects of heat stress in males but relaxes the observed negative effects in females. Our results suggest that sexual selection can reverse sex differences in thermal sensitivity, and may therefore alter sex-specific selection on alleles associated with heat tolerance.Assuming that sexual selection and natural selection are aligned to favour the same genetic variants under environmental stress, our findings support the idea that sexual selection on males may promote the adaptation to current global warming. Read the free Plain Language Summary for this article on the Journal blog.
Enhanced top-down control of herbivore population growth on plants with impaired defences
Herbivore densities can be regulated by bottom-up and top-down forces such as plant defences and natural enemies, respectively. These forces can interact with each other to increase plant protection against herbivores; however, how much complementarity exists between bottom-up and top-down forces still remains to be fully elucidated. Particularly, because plant defences can hinder natural enemies, how these interactions affect herbivore performance and dynamics remains elusive.To address this topic, we performed laboratory and greenhouse bioassays with herbivorous mite pests and predatory mites on mutant tomato plants that lack defensive hairs on stems and leaves. Particularly, we investigated the behaviour and population dynamics of different phytophagous mite species in the absence and presence of predatory mites.We show that predatory mites do not only perform better on tomatoes lacking defensive hairs but also that they can suppress herbivore densities better and faster on these hairless plants. Hence, top-down control of herbivores by natural enemies more than compensated the reduced bottom-up herbivore control by plant defences.Our results lead to the counter-intuitive insight that removing, instead of introducing, plant defence traits can result in superior protection against important pests through biological control. Read the free Plain Language Summary for this article on the Journal blog.
Complex plant quality-microbiota-population interactions modulate the response of a specialist herbivore to the defence of its host plant
Many specialist herbivores have evolved strategies to cope with plant defences, with gut microbiota potentially participating to such adaptations.In this study, we assessed whether the history of plant use (population origin) and microbiota may interact with plant defence adaptation.We tested whether microbiota enhance the performance of larvae on their host plant, and increase their ability to cope the defensive compounds, iridoid glycosides (IGs).The gut microbiota were significantly affected by both larval population origin and host plant IG level. Contrary to our prediction, impoverishing the microbiota with antibiotic treatment did not reduce larval performance.As expected for this specialized insect herbivore, sequestration of one of IGs was higher in larvae fed with plants producing higher concentration of IGs. These larvae also showed metabolic signature of intoxication (i.e. decrease in Lysine levels). However, intoxication on highly defended plants was only observed when larvae with a history of poorly defended plants were simultaneously treated with antibiotics.Our results suggest that both adaptation and microbiota contribute to the metabolic response of herbivores to plant defence though complex interactions. Read the free Plain Language Summary for this article on the Journal blog.
Nitrogen availability and plant-plant interactions drive leaf silicon concentration in wheat genotypes
Estimating plasticity of leaf silicon (Si) in response to abiotic and biotic factors underpins our comprehension of plant defences and stress resistance in natural and agroecosystems. However, how nitrogen (N) addition and intraspecific plant-plant interactions affect Si concentration remains unclear.We grew 19 durum wheat genotypes ( ssp. ) in pots, either alone or in intra- or intergenotypic cultures of two individuals, and with or without N. Above-ground biomass, plant height and leaf [Si] were quantified at the beginning of the flowering stage.Nitrogen addition decreased leaf [Si] for most genotypes, proportionally to the biomass increase. Si plasticity to plant-plant interactions varied significantly among genotypes, with both increases and decreases in leaf [Si] when mixed with a neighbour, regardless of the mixture type (intra-/intergenotype). Besides, increased leaf [Si] in response to plant-plant interactions was associated with increased plant height.Our results suggest the occurrence of both facilitation and competition for Si uptake from the rhizosphere in wheat mixtures. Future research should identify which leaf and root traits characterise facilitating neighbours for Si acquisition. We also show that Si could be involved in height gain in response to intraspecific competition, possibly for increasing light capture. This important finding opens up new research directions on Si and plant-plant interactions in both natural ecosystems and agroecosystems. More generally, our results stress the need to explore leaf Si plasticity in responses to both abiotic and biotic factors to understand plant stress resistance. Read the free Plain Language Summary for this article on the Journal blog.
Toxin tolerance across landscapes: Ecological exposure not a prerequisite
Little is known about the tolerances of mammalian herbivores to plant specialized metabolites across landscapes.We investigated the tolerances of two species of herbivorous woodrats, (desert woodrat) and (Bryant's woodrat) to creosote bush (), a widely distributed shrub with a highly toxic resin. Woodrats were sampled from 13 locations both with and without creosote bush across a 900 km transect in the US southwest. We tested whether these woodrat populations consume creosote bush using plant metabarcoding of feces and quantified their tolerance to creosote bush through feeding trials using chow amended with creosote resin.Toxin tolerance was analyzed in the context of population structure across collection sites with microsatellite analyses. Genetic differentiation among woodrats collected from different locations was minimal within either species. Tolerance differed substantially between the two species, with persisting 20% longer than in feeding trials with creosote resin. Furthermore, in both species, tolerance to creosote resin was similar among woodrats near or within creosote bush habitat. In both species, woodrats collected greater than 25 km from creosote had markedly lower tolerances to creosote resin compared to animals from within the range of creosote bush.The results imply that mammalian herbivores are adapted to the specialized metabolites of plants in their diet, and that this tolerance can extend several kilometers outside of the range of dietary items. That is, direct ecological exposure to the specialized chemistry of particular plant species is not a prerequisite for tolerance to these compounds. These findings lay the groundwork for additional studies to investigate the genetic mechanisms underlying toxin tolerance and to identify how these mechanisms are maintained across landscape-level scales in mammalian herbivores.
Nocturnal dissolved organic matter release by turf algae and its role in the microbialization of reefs
The increased release of dissolved organic matter (DOM) by algae has been associated with the fast but inefficient growth of opportunistic microbial pathogens and the ongoing degradation of coral reefs. Turf algae (consortia of microalgae and macroalgae commonly including cyanobacteria) dominate benthic communities on many reefs worldwide. Opposite to other reef algae that predominantly release DOM during the day, turf algae containing cyanobacteria may additionally release large amounts of DOM at night. However, this night-DOM release and its potential contribution to the microbialization of reefs remains to be investigated.We first tested the occurrence of hypoxic conditions at the turf algae-water interface, as a lack of oxygen will facilitate the production and release of fermentation intermediates as night-time DOM. Second, the dissolved organic carbon (DOC) release by turf algae was quantified during day time and nighttime, and the quality of day and night exudates as food for bacterioplankton was tested. Finally, DOC release rates of turf algae were combined with estimates of DOC release based on benthic community composition in 1973 and 2013 to explore how changes in benthic community composition affected the contribution of night-DOC to the reef-wide DOC production.A rapid shift from supersaturated to hypoxic conditions at the turf algae-water interface occurred immediately after the onset of darkness, resulting in night-DOC release rates similar to those during daytime. Bioassays revealed major differences in the quality between day and night exudates: Night-DOC was utilized by bacterioplankton two times faster than day-DOC, but yielded a four times lower growth efficiency. Changes in benthic community composition were estimated to have resulted in a doubling of DOC release since 1973, due to an increasing abundance of benthic cyanobacterial mats (BCMs), with night-DOC release by BCMs and turf algae accounting for >50% of the total release over a diurnal cycle.Night-DOC released by BCMs and turf algae is likely an important driver in the microbialization of reefs by stimulating microbial respiration at the expense of energy and nutrient transfer to higher trophic levels via the microbial loop, thereby threatening the productivity and biodiversity of these unique ecosystems. Read the free Plain Language Summary for this article on the Journal blog.
Re-emphasizing mechanism in the community ecology of disease
. Hosts and their parasites exist within complex ecological communities. However, the role that non-focal community members, species which cannot be infected by a focal pathogen, may play in altering parasite transmission is often only studied in the lens of the "diversity-disease" relationship by focusing on species richness. This approach largely ignores mechanistic species interactions and risks collapsing our understanding of the community ecology of disease down to defining the prominence of "amplification" vs. "dilution" effects. . However, non-focal species vary in their traits, densities, and types of interactions with focal hosts and parasites. Therefore, a community ecology approach based on the mechanisms underlying parasite transmission, host harm, and dynamic species interactions may better advance our understanding of parasite transmission in complex communities. . Using the concept of the parasite's basic reproductive ratio, R, as a generalizable framework, we examine several critical mechanisms by which interactions among hosts, parasites, and non-focal species modulate transmission and provide examples from relevant literature. . By focusing on the mechanism by which non-focal species impact transmission, we can emphasize the similarities among classic paradigms in the community ecology of disease, gain new insights into parasite invasion and persistence, community traits correlated with disease dilution or amplification, and the feasibility of biocontrol for parasites of conservation, agricultural, or human health concern.
Counter-gradient variation of reproductive effort in a widely distributed temperate oak ()
The genetic and phenotypic variability of life history traits determines the demographic attributes of tree populations and, thus, their responses to anthropogenic climate change. Growth- and survival-related traits have been widely studied in forest ecology, but little is known about the determinism of reproductive traits.Using an elevation gradient experiment in the Pyrenees we assessed the degree to which variations in reproductive effort along climatic gradients are environmentally or genetically driven, by comparing oak populations () growing under field and common garden conditions. monitoring revealed a decline in reproductive effort with increasing elevation and decreasing temperature. In common garden conditions, significant genetic differentiation was observed between provenances for reproduction and growth: trees from cold environments (high elevations) grew more slowly, and produced larger acorns in larger numbers. Our observations show that genetic and phenotypic clines for reproductive traits have opposite signs (counter-gradient) along the environmental gradient as opposed to growth, for which genetic variation parallels phenotypic variation (co-gradient).The counter-gradient found here for reproductive effort reveals that genetic variation partly counteracts the phenotypic effect of temperature, moderating the change in reproductive effort according to temperature. We consider the possible contribution to this counter-gradient in reproductive effort as an evolutionary trade-off between reproduction and growth.
Individual energy dynamics reveal nonlinear interaction of stressors threatening migratory fish populations
Migratory fish populations, like salmon, have dramatically declined for decades. Because of their extensive and energetically costly breeding migration, anadromous fish are sensitive to a variety of environmental stressors, in particular infrastructure building in freshwater streams that increases the energetic requirements of the breeding migration and food declines in the ocean.While the effects of these stressors separately are well documented, the cumulative and interactive impacts of them are poorly understood.Here, we use a bioenergetics model recently developed for fish life history to investigate the individual life history and population responses to these stressors combined.We find that food decline in the ocean can mitigate rather than exacerbate the negative effect of elevated migration costs imposed by infrastructure building in streams. This counterintuitive effect results from the highly nonlinear manner in which these stressors interact and affect the individual energetics. In particular, this effect arises from the fact that individuals growing in the ocean under higher food conditions reach larger sizes with concomitant larger migration costs but are leaner. As a consequence of their lower energy densities, they spend most of their energy reserves to transport their body upstream when migration costs are high, and little is left for reproduction, resulting in lower individual fitness.Our results highlight the need of a mechanistic understanding integrating individual energetics, life history and population dynamics to accurately assess biological consequences of environmental change. A free Plain Language Summary can be found within the Supporting Information of this article.
Positive and negative interspecific interactions between coexisting rice planthoppers neutralise the effects of elevated temperatures
Global warming is often predicted to increase damage to plants through direct effects on insect herbivores. However, the indirect impacts of rising temperatures on herbivores, mediated through interactions with their biotic environment, could dampen these effects.Using a series of reciprocal density experiments with gravid females and developing nymphs, we examined interspecific competition between two coexisting phloem feeders (BPH) and (WBPH), on rice at 25 and 30°C.WBPH performed better (i.e. adults survived longer, nymphs developed faster and grew larger) at 25°C and BPH (i.e. nymphs developed faster) at 30°C. However, contrary to predictions, WBPH had a greater effect in reducing oviposition and nymph performance in BPH at 30°C.A decoupling of resource use by WBPH and its antagonistic effects on BPH at the higher temperature suggests that WBPH feeding induces host defences that reduce BPH fitness (i.e. interference competition). Meanwhile, BPH facilitated WBPH oviposition at 30°C and facilitated WBPH nymph performance at 25 and 30°C. Greater facilitation of feeding in WBPH nymphs by BPH at high densities suggests that mechanical damage and host responses to damage increased the fitness of the heterospecific nymphs.Although BPH also facilitated egg-laying by WBPH, intra- and interspecific crowding countered this facilitation at both temperatures. Simulated life tables for planthoppers at 25 and 30°C depicted significantly lower offspring numbers on rice infested by WBPH alone and from mixed BPH-WBPH infestations than from infestations by BPH alone.Our results indicate how interference competition-mediated through host plant defences-can increase ecosystem resilience to the warmer temperatures predicted under global climate change. A free Plain Language Summary can be found within the Supporting Information of this article.
Climate affects neighbour-induced changes in leaf chemical defences and tree diversity-herbivory relationships
Associational resistance theory predicts that insect herbivory decreases with increasing tree diversity in forest ecosystems. However, the generality of this effect and its underlying mechanisms are still debated, particularly since evidence has accumulated that climate may influence the direction and strength of the relationship between diversity and herbivory.We quantified insect leaf herbivory and leaf chemical defences (phenolic compounds) of silver birch in pure and mixed plots with different tree species composition across 12 tree diversity experiments in different climates. We investigated whether the effects of neighbouring tree species diversity on insect herbivory in birch, that is, associational effects, were dependent on the climatic context, and whether neighbour-induced changes in birch chemical defences were involved in associational resistance to insect herbivory.We showed that herbivory on birch decreased with tree species richness (i.e. associational resistance) in colder environments but that this relationship faded as mean annual temperature increased.Birch leaf chemical defences increased with tree species richness but decreased with the phylogenetic distinctiveness of birch from its neighbours, particularly in warmer and more humid environments.Herbivory was negatively correlated with leaf chemical defences, particularly when birch was associated with closely related species. The interactive effect of tree diversity and climate on herbivory was partially mediated by changes in leaf chemical defences.Our findings confirm that tree species diversity can modify the leaf chemistry of a focal species, hence its quality for herbivores. They further stress that such neighbour-induced changes are dependent on climate and that tree diversity effects on insect herbivory are partially mediated by these neighbour-induced changes in chemical defences.
Ecology eclipses phylogeny as a major driver of nematode parasite community structure in a graminivorous primate
Understanding the relative strength of ecology and phylogeny in shaping parasite communities can inform parasite control and wildlife conservation initiatives while contributing to the study of host species evolution.We tested the relative strengths of phylogeny and ecology in driving parasite community structure in a host whose ecology diverges significantly from that of its closest phylogenetic relatives.We characterized the gastrointestinal (GI) parasite community of wild geladas (), primates that are closely related to baboons but specialized to graminovory in the Ethiopian Highlands.Geladas exhibited very constrained GI parasite communities: only two genera ( and ) were identified across 303 samples. This is far below the diversity reported for baboons ( spp.) and at the low end of the range of domestic grazers (e.g., ) inhabiting the same region and ecological niche.Using deep amplicon sequencing, we identified 15 amplicon sequence variants (ASVs) within the two genera, seven of which matched to seven to , and one to .Population was an important predictor of ASV richness. Geladas in the most ecologically disturbed area of the national park exhibited ~4x higher ASV richness than geladas at a less disturbed location within the park.In this system, ecology was a stronger predictor of parasite community structure than phylogeny, with geladas sharing more elements of their parasite communities with other grazers in the same area than with closely related sister taxa.
The untapped potential of reptile biodiversity for understanding how and why animals age
1. The field of comparative aging biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analyzed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of aging. 2. We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of aging in reptiles consistent with canonical hallmarks of aging in model systems? What are the knowledge gaps in our understanding of reptile aging? 3. We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower aging than other orders, but data on crocodilians and tuatara are sparse. Sex-specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals. 4. Reptiles share many physiological and molecular pathways of aging with mammals, birds, and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical aging phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signaling, and DNA repair. 5. To overcome challenges to the study of reptile aging, we recommend extending and expanding long-term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life-history axes, and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all aging biology.
Behavioural fever reduces ranaviral infection in toads
1. Host behaviour is known to influence disease dynamics. Additionally, hosts often change their behaviours in response to pathogen detection to resist and avoid disease. The capacity of wildlife populations to respond to pathogens using behavioural plasticity is critical for reducing the impacts of disease outbreaks. However, there is limited information regarding the ability of ectothermic vertebrates to resist diseases via behavioural plasticity. 2. Here, we experimentally examine the effect of host behaviour on ranaviral infections, which affect at least 175 species of ectothermic vertebrates. We placed metamorphic (temporal block 1) or adult (block 2) Southern toads () in thermal gradients, tested their temperature preferences before and after oral inoculation by measuring individual-level body temperature over time, and measured ranaviral loads of viral-exposed individuals. 3. We found significant individual-level variation in temperature preference and evidence for behavioural fever in both metamorph and adult during the first two days after exposure. Additionally, we found that individual-level change in temperature preference was negatively correlated with ranaviral load and a better predictor of load than average temperature preference or maximum temperature reached by an individual. In other words, an increase in baseline temperature preference was more important than simply reaching an absolute temperature. 4. These results suggest that behavioural fever is an effective mechanism for resisting ranaviral infections.