Thematic accuracy assessment of the NLCD 2019 land cover for the conterminous United States
The National Land Cover Database (NLCD), a product suite produced through the MultiResolution Land Characteristics (MRLC) consortium, is an operational land cover monitoring program. Starting from a base year of 2001, NLCD releases a land cover database every 2-3-years. The recent release of NLCD2019 extends the database to 18 years. We implemented a stratified random sample to collect land cover reference data for the 2016 and 2019 components of the NLCD2019 database at Level II and Level I of the classification hierarchy. For both dates, Level II land cover overall accuracies (OA) were 77.5% ± 1% (± value is the standard error) when agreement was defined as a match between the map label and primary reference label only, and increased to 87.1% ± 0.7% when agreement was defined as a match between the map label and either the primary or alternate reference label. At Level I of the classification hierarchy, land cover OA was 83.1% ± 0.9% for both 2016 and 2019 when agreement was defined as a match between the map label and primary reference label only, and increased to 90.3% ± 0.7% when agreement also included the alternate reference label. The Level II and Level I OA for the 2016 land cover in the NLCD2019 database were 5% higher compared to the 2016 land cover component of the NLCD2016 database when agreement was defined as a match between the map label and primary reference label only. No improvement was realized by the NLCD2019 database when agreement also included the alternate reference label. User's accuracies (UA) for forest loss and grass gain were>70% when agreement included either the primary or alternate label, and UA was generally<50% for all other change themes. Producer's accuracies (PA) were>70% for grass loss and gain and water gain and generally<50% for the other change themes. We conducted a post-analysis review for map-reference agreement to identify patterns of disagreement, and these findings are discussed in the context of potential adjustments to mapping and reference data collection procedures that may lead to improved map accuracy going forward.
Assessing the Utility of Satellite Imagery with Differing Spatial Resolutions for Deriving Proxy Measures of Slum Presence in Accra, Ghana
Little research has been conducted on how differing spatial resolutions or classification techniques affect image-driven identification and categorization of slum neighborhoods in developing nations. This study assesses the correlation between satellite-derived land cover and census-derived socioeconomic variables in Accra, Ghana to determine whether the relationship between these variables is altered with a change in spatial resolution or scale. ASTER and Landsat TM satellite images are each used to classify land cover using spectral mixture analysis (SMA), and land cover proportions are summarized across Enumeration Areas in Accra and compared to socioeconomic data for the same areas. Correlation and regression analyses compare the SMA results with a Slum Index created from various socio-economic data taken from the Census of Ghana, as well as to data derived from a "hard" per-pixel classification of a 2.4 m Quickbird image. Results show that the vegetation fraction is significantly correlated with the Slum Index (Pearson's ranges from -0.33 to -0.51 depending on which image-derived product is compared), and the use of a spatial error model improves results (multivariate model pseudo- ranges from 0.37 to 0.40 by image product). We also find that SMA products derived from ASTER are a sufficient substitute for classification products derived from higher spatial resolution QB data when using land cover fractions as a proxy for slum presence, suggesting that SMA might be more cost-effective for deriving land cover fractions than the use of high-resolution imagery for this type of demographic analysis.
Mapping impervious surface area in the Brazilian Amazon using Landsat Imagery
Impervious surface area (ISA) is an important parameter related to environmental change and socioeconomic conditions, and has been given increasing attention in the past two decades. However, mapping ISA using remote sensing data is still a challenge due to the variety and complexity of materials comprising ISA and the limitations of remote sensing data spectral and spatial resolution. This paper examines ISA mapping with Landsat Thematic Mapper (TM) images in urban and urban-rural landscapes in the Brazilian Amazon. A fractional-based method and a per-pixel based method were used to map ISA distribution, and their results were evaluated with QuickBird images based on the 2010 Brazilian census at the sector scale of analysis for examining the mapping performance. This research showed that the fraction-based method improved the ISA estimation, especially in urban-rural frontiers and in a landscape with a small urban extent. Large errors were mainly located at the sites having ISA proportions of 0.2-0.4 in a census sector. Calibration with high spatial resolution data is valuable for improving Landsat-based ISA estimates.
Data-enriched Interpolation for Temporally Consistent Population Compositions
This research evaluates the performance of areal interpolation coupled with dasymetric refinement to estimate different demographic attributes, namely population sub-groups based on race, age structure and urban residence, within consistent census tract boundaries from 1990 to 2010 in Massachusetts. The creation of such consistent estimates facilitates the study of the nuanced micro-scale evolution of different aspects of population, which is impossible using temporally incompatible small-area census geographies from different points in time. Various unexplored ancillary variables, including the Global Human Settlement Layer (GHSL), the National Land-Cover Database (NLCD), parcels, building footprints and the proprietary ZTRAX dataset are utilized for dasymetric refinement prior to areal interpolation to examine their effectiveness in improving the accuracy of multi-temporal population estimates. Different areal interpolation methods including Areal Weighting (AW), Target Density Weighting (TDW), Expectation Maximization (EM) and its data-extended approach are coupled with different dasymetric refinement scenarios based on these ancillary variables. The resulting consistent small area estimates of white and black subpopulations, people of age 18-65 and urban population show that dasymetrically refined areal interpolation is particularly effective when the analysis spans a longer time period (1990-2010 instead of 2000-2010) and the enumerated population is sufficiently large (e.g., counts of white vs. black). The results also demonstrate that current census-defined urban areas overestimate the spatial distribution of urban population and dasymetrically refined areal interpolation improves estimates of urban population. Refined TDW using building footprints or the ZTRAX dataset outperforms all other methods. The implementation of areal interpolation enriched by dasymetric refinement represents a promising strategy to create more reliable multi-temporal and consistent estimates of different population subgroups and thus demographic compositions. This methodological foundation has the potential to advance micro-scale modeling of various subpopulations, particularly urban population to inform studies of urbanization and population change over time as well as future population projections.
Evaluating uncertainty in Landsat-derived postfire recovery metrics due to terrain, soil, and shrub type variations in southern California
Temporal trajectories of apparent vegetation abundance based on the multi-decadal Landsat image series provide valuable information on the postfire recovery of chaparral shrublands, which tend to mature within one decade. Signals of change in fractional shrub cover (FSC) extracted from time-sequential Normalized Difference Vegetation Index (NDVI) data can be systematically biased due to spatial variation in shrub type, soil substrate, or illumination differences associated with topography. We evaluate the effects of these variables in Landsat-derived metrics of FSC and postfire recovery, based upon three chaparral sites in southern California which contain shrub community ecotones, complex terrain, and soil variations. Detailed validations of prefire and postfire FSC are based on high spatial resolution ortho-imagery; cross-stratified random sampling is used for variable control. We find that differences in the composition and structure of shrubs (inferred from ortho-imagery) can substantially influence FSC-NDVI relations and impact recovery metrics. Differences in soil type have a moderate effect on the FSC-NDVI relation in one of the study sites, while no substantial effects were observed due to variation of terrain illumination among the study sites. Arithmetic difference recovery metrics - based on NDVI values that were not normalized with unburned control plots - correlate in a moderate but significant manner with a change in FSC ( values range 0.47-0.59 at two sites). Similar regression coefficients resulted from using Landsat visible reflectance data alone. The lowest correlations to FSC resulted from Soil-Adjusted Vegetation Index (SAVI) and are attributed to the effects of the soil-adjustment factor in sparsely vegetated areas. The Normalized Burn Ratio and Normalized Burn Ratio 2 showed a moderate correlation to FSC. This study confirms the utility of Landsat NDVI data for postfire recovery evaluation and implies a need for stratified analysis of postfire recovery in some chaparral landscapes.
Assessing the relationship between morphology and mapping accuracy of built-up areas derived from global human settlement data
It is common knowledge that the level of landscape heterogeneity may affect the performance of remote sensing based land use / land cover classification. While this issue has been studied in depth for land cover data in general, the specific relationship between the mapping accuracy and morphological characteristics of built-up surfaces has not been analyzed in detail, an urgent need given the recent emergence of a variety of global, fine-resolution settlement datasets. Moreover, previous studies typically rely on aggregated, broad-scale landscape metrics to quantify the morphology of built-up areas, neglecting the fine-grained spatial variation and scale dependency of such metrics. Herein, we aim to fill this knowledge gap by assessing the associations between localized (focal) landscape metrics, derived from binary built-up surfaces and localized data accuracy estimates. We tested our approach for built-up surfaces from the Global Human Settlement Layer (GHSL) for Massachusetts (USA). Specifically, we examined the explanatory power of landscape metrics with respect to both commission and omission errors in the multi-temporal GHS-BUILT R2018A data product. We found that the Landscape Shape Index (LSI) calculated in focal windows exhibits, on average, the highest levels of correlation to focal accuracy measures. These relationships are scale-dependent, and become stronger with increasing level of spatial support. We found that thematic omission error, as measured by Recall, has the strongest relationship to measures of built-up surface morphology across different temporal epochs and spatial resolutions. The results of our regression analysis (R>0.9), estimating accuracy based on landscape metrics, confirmed these findings. Lastly, we tested the generalizability of our findings by regionally stratifying our regression models and applying them to a different version of the GHSL (i.e., the GHS-BUILT-S2) and a different study area. We observed varying levels of model transferability, indicating that the relationship between accuracy and landscape metrics may be sensor-specific, and is heavily localized for most accuracy metrics, but quite generalizable for the Recall measure. This indicates that there is a strong and generalizable association between morphological properties of built-up land and the degree to which it is "undermapped".