Molecular Autism

Auditory N1 event-related potential amplitude is predictive of serum concentration of BPN14770 in fragile X syndrome
Norris JE, Berry-Kravis EM, Harnett MD, Reines SA, Reese MA, Outterson AH, Michalak C, Furman J, Gurney ME and Ethridge LE
Fragile X syndrome (FXS) is a rare neurodevelopmental disorder caused by a CGG repeat expansion ≥ 200 repeats in 5' untranslated region of the FMR1 gene, leading to intellectual disability and cognitive difficulties, including in the domain of communication. A recent phase 2a clinical trial testing BPN14770, a phosphodiesterase 4D inhibitor, showed improved cognition in 30 adult males with FXS on drug relative to placebo. The initial study found significant improvements in clinical measures assessing cognition, language, and daily functioning in addition to marginal improvements in electroencephalography (EEG) results for the amplitude of the N1 event-related potential (ERP) component. These EEG results suggest BPN14770 improved neural hyperexcitability in FXS. The current study investigated the relationship between BPN14770 pharmacokinetics and the amplitude of the N1 ERP component from the initial data. Consistent with the original group-level finding post-period 1 of the study, participants who received BPN14770 in period 1 showed a significant correlation between N1 amplitude and serum concentration of BPN14770 measured at the end of period 1. These findings strengthen the validity of the original result, indicating that BPN14770 improves cognitive performance by modulating neural hyperexcitability. This study represents the first report of a significant correlation between a reliably abnormal EEG marker and serum concentration of a novel pharmaceutical in FXS.
Investigating frank autism: clinician initial impressions and autism characteristics
Canale RR, Larson C, Thomas RP, Barton M, Fein D and Eigsti IM
"Frank autism," recognizable through the first minutes of an interaction, describes a behavioral presentation of a subset of autistic individuals that is closely tied to social communication challenges, and may be linked to so-called "prototypical autism." To date, there is no research on frank autism presentations of autistic adolescents and young adults, nor individuals diagnosed with autism spectrum disorder (ASD) in childhood who do not meet diagnostic criteria during or after adolescence (loss of autism diagnosis, LAD). In addition, there are currently no data on the factors that drive frank autism impressions in these adolescent groups.
Understanding cognitive flexibility in emotional evaluation in autistic males and females: the social context matters
Lacroix A, Bennetot-Deveria Y, Baciu M, Dutheil F, Magnon V, Gomot M and Mermillod M
Autistic individuals often have difficulty flexibly adjusting their behavior. However, laboratory experiments have yielded inconsistent results, potentially due to various influencing factors, which need to be examined in detail. This study aimed to investigate the hypothesis that the social content of stimuli could play a specific role in some of the flexibility challenges faced by autistic individuals. The second aim was to explore sex differences in this context.
Structure-function coupling in white matter uncovers the hypoconnectivity in autism spectrum disorder
Qing P, Zhang X, Liu Q, Huang L, Xu D, Le J, Kendrick KM, Lai H and Zhao W
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder associated with alterations in structural and functional coupling in gray matter. However, despite the detectability and modulation of brain signals in white matter, the structure-function coupling in white matter in autism remains less explored.
Superior temporal sulcus folding, functional network connectivity, and autistic-like traits in a non-clinical population
Nenadić I, Schröder Y, Hoffmann J, Evermann U, Pfarr JK, Bergmann A, Hohmann DM, Keil B, Abu-Akel A, Stroth S, Kamp-Becker I, Jansen A, Grezellschak S and Meller T
Autistic-like traits (ALT) are prevalent across the general population and might be linked to some facets of a broader autism spectrum disorder (ASD) phenotype. Recent studies suggest an association of these traits with both genetic and brain structural markers in non-autistic individuals, showing similar spatial location of findings observed in ASD and thus suggesting a potential neurobiological continuum.
Characterizing genetic pathways unique to autism spectrum disorder at multiple levels of biological analysis
Schaffer LS, Breunig S, Lawrence JM, Foote IF and Grotzinger AD
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by atypical patterns of social functioning and repetitive/restricted behaviors. ASD commonly co-occurs with ADHD and, despite their clinical distinctiveness, the two share considerable genetic overlap. Given their shared genetic liability, it is unclear which genetic pathways increase the likelihood of ASD independently of ADHD.
Developmental trajectories in infants and pre-school children with Neurofibromatosis 1
Slevin H, Kehinde F, Begum-Ali J, Ellis C, Burkitt-Wright E, Green J, Johnson MH, Pasco G, Charman T, Jones EJH, Garg S and
Children with Neurofibromatosis 1 (NF1) show cognitive, behavioural and social differences compared to their peers. However, the age and sequence at which these differences begin to emerge is not fully understood. This prospective cohort study examines the cognitive, behavioural, ADHD trait and autism symptom development in infant and pre-school children with NF1 compared with typically developing (TD) children without a family history of neurodevelopmental conditions.
Task-based functional neural correlates of social cognition across autism and schizophrenia spectrum disorders
Oliver LD, Moxon-Emre I, Hawco C, Dickie EW, Dakli A, Lyon RE, Szatmari P, Haltigan JD, Goldenberg A, Rashidi AG, Tan V, Secara MT, Desarkar P, Foussias G, Buchanan RW, Malhotra AK, Lai MC, Voineskos AN and Ameis SH
Autism and schizophrenia spectrum disorders (SSDs) both feature atypical social cognition. Despite evidence for comparable group-level performance in lower-level emotion processing and higher-level mentalizing, limited research has examined the neural basis of social cognition across these conditions. Our goal was to compare the neural correlates of social cognition in autism, SSDs, and typically developing controls (TDCs).
Contracted functional connectivity profiles in autism
Weber CF, Kebets V, Benkarim O, Lariviere S, Wang Y, Ngo A, Jiang H, Chai X, Park BY, Milham MP, Di Martino A, Valk S, Hong SJ and Bernhardt BC
Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain network organization, with prior work suggesting differential connectivity alterations with respect to functional connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-demographic and clinical phenotypes.
Phenome-wide profiling identifies genotype-phenotype associations in Phelan-McDermid syndrome using family-sourced data from an international registry
Yin R, Wack M, Hassen-Khodja C, McDuffie MT, Bliss G, Horn EJ, Kothari C, McLarney B, Davis R, Hanson K, O'Boyle M, Betancur C and Avillach P
Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused by 22q13 deletions that include the SHANK3 gene or pathogenic sequence variants in SHANK3. It is characterized by global developmental delay, intellectual disability, speech impairment, autism spectrum disorder, and hypotonia; other variable features include epilepsy, brain and renal malformations, and mild dysmorphic features. Here, we conducted genotype-phenotype correlation analyses using the PMS International Registry, a family-driven registry that compiles clinical data in the form of family-reported outcomes and family-sourced genetic test results.
Identifying SETBP1 haploinsufficiency molecular pathways to improve patient diagnosis using induced pluripotent stem cells and neural disease modelling
Shaw NC, Chen K, Farley KO, Hedges M, Forbes C, Baynam G, Lassmann T and Fear VS
SETBP1 Haploinsufficiency Disorder (SETBP1-HD) is characterised by mild to moderate intellectual disability, speech and language impairment, mild motor developmental delay, behavioural issues, hypotonia, mild facial dysmorphisms, and vision impairment. Despite a clear link between SETBP1 mutations and neurodevelopmental disorders the precise role of SETBP1 in neural development remains elusive. We investigate the functional effects of three SETBP1 genetic variants including two pathogenic mutations p.Glu545Ter and SETBP1 p.Tyr1066Ter, resulting in removal of SKI and/or SET domains, and a point mutation p.Thr1387Met in the SET domain.
A 3D approach to understanding heterogeneity in early developing autisms
Mandelli V, Severino I, Eyler L, Pierce K, Courchesne E and Lombardo MV
Phenotypic heterogeneity in early language, intellectual, motor, and adaptive functioning (LIMA) features are amongst the most striking features that distinguish different types of autistic individuals. Yet the current diagnostic criteria uses a single label of autism and implicitly emphasizes what individuals have in common as core social-communicative and restricted repetitive behavior difficulties. Subtype labels based on the non-core LIMA features may help to more meaningfully distinguish types of autisms with differing developmental paths and differential underlying biology.
Enhanced motor noise in an autism subtype with poor motor skills
Mandelli V, Landi I, Ceccarelli SB, Molteni M, Nobile M, D'Ausilio A, Fadiga L, Crippa A and Lombardo MV
Motor difficulties are common in many, but not all, autistic individuals. These difficulties can co-occur with other problems, such as delays in language, intellectual, and adaptive functioning. Biological mechanisms underpinning such difficulties are less well understood. Poor motor skills tend to be more common in individuals carrying highly penetrant rare genetic mutations. Such mechanisms may have downstream consequences of altering neurophysiological excitation-inhibition balance and lead to enhanced behavioral motor noise.
Pharmacological inhibition of the CB1 cannabinoid receptor restores abnormal brain mitochondrial CB1 receptor expression and rescues bioenergetic and cognitive defects in a female mouse model of Rett syndrome
Cosentino L, Urbinati C, Lanzillotta C, De Rasmo D, Valenti D, Pellas M, Quattrini MC, Piscitelli F, Kostrzewa M, Di Domenico F, Pietraforte D, Bisogno T, Signorile A, Vacca RA and De Filippis B
Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT.
Association of polygenic scores for autism with volumetric MRI phenotypes in cerebellum and brainstem in adults
Mohammad S, Gentreau M, Dubol M, Rukh G, Mwinyi J and Schiöth HB
Previous research on autism spectrum disorders (ASD) have showed important volumetric alterations in the cerebellum and brainstem. Most of these studies are however limited to case-control studies with small clinical samples and including mainly children or adolescents. Herein, we aimed to explore the association between the cumulative genetic load (polygenic risk score, PRS) for ASD and volumetric alterations in the cerebellum and brainstem, as well as global brain tissue volumes of the brain among adults at the population level. We utilized the latest genome-wide association study of ASD by the Psychiatric Genetics Consortium (18,381 cases, 27,969 controls) and constructed the ASD PRS in an independent cohort, the UK Biobank. Regression analyses controlled for multiple comparisons with the false-discovery rate (FDR) at 5% were performed to investigate the association between ASD PRS and forty-four brain magnetic resonance imaging (MRI) phenotypes among ~ 31,000 participants. Primary analyses included sixteen MRI phenotypes: total volumes of the brain, cerebrospinal fluid (CSF), grey matter (GM), white matter (WM), GM of whole cerebellum, brainstem, and ten regions of the cerebellum (I_IV, V, VI, VIIb, VIIIa, VIIIb, IX, X, CrusI and CrusII). Secondary analyses included twenty-eight MRI phenotypes: the sub-regional volumes of cerebellum including the GM of the vermis and both left and right lobules of each cerebellar region. ASD PRS were significantly associated with the volumes of seven brain areas, whereby higher PRS were associated to reduced volumes of the whole brain, WM, brainstem, and cerebellar regions I-IV, IX, and X, and an increased volume of the CSF. Three sub-regional volumes including the left cerebellar lobule I-IV, cerebellar vermes VIIIb, and X were significantly and negatively associated with ASD PRS. The study highlights a substantial connection between susceptibility to ASD, its underlying genetic etiology, and neuroanatomical alterations of the adult brain.
Mapping neural correlates of biological motion perception in autistic children using high-density diffuse optical tomography
Yang D, Svoboda AM, George TG, Mansfield PK, Wheelock MD, Schroeder ML, Rafferty SM, Sherafati A, Tripathy K, Burns-Yocum T, Forsen E, Pruett JR, Marrus NM, Culver JP, Constantino JN and Eggebrecht AT
Autism spectrum disorder (ASD), a neurodevelopmental disorder defined by social communication deficits plus repetitive behaviors and restricted interests, currently affects 1/36 children in the general population. Recent advances in functional brain imaging show promise to provide useful biomarkers of ASD diagnostic likelihood, behavioral trait severity, and even response to therapeutic intervention. However, current gold-standard neuroimaging methods (e.g., functional magnetic resonance imaging, fMRI) are limited in naturalistic studies of brain function underlying ASD-associated behaviors due to the constrained imaging environment. Compared to fMRI, high-density diffuse optical tomography (HD-DOT), a non-invasive and minimally constraining optical neuroimaging modality, can overcome these limitations. Herein, we aimed to establish HD-DOT to evaluate brain function in autistic and non-autistic school-age children as they performed a biological motion perception task previously shown to yield results related to both ASD diagnosis and behavioral traits.
Mate selection and current trends in the prevalence of autism
Forsen E, Marrus N, Joyce J, Zhang Y and Constantino JN
According to the most recent U.S. CDC surveillance data, the rise in prevalence of childhood autism spectrum disorder among minority children has begun to outpace that of non-Hispanic white children. Since prior research has identified possible differences in the extent of mate selection for autistic traits across families of different ethnicity, this study examined variation in autism related traits in contemporaneous, epidemiologically ascertained samples of spousal pairs representing Hispanic and non-Hispanic white populations. The purpose was to determine whether discrepancies by ethnicity could contribute to differential increases in prevalence in the current generation of young children.
Publisher Correction: Measuring self and informant perspectives of restricted and repetitive behaviours (RRBs): psychometric evaluation of the repetitive Behaviours Questionnaire-3 (RBQ-3) in adult clinical practice and research settings
Jones CRG, Livingston LA, Fretwell C, Uljarević M, Carrington SJ, Shah P and Leekam SR
H-NMR-based metabolomics reveals metabolic alterations in early development of a mouse model of Angelman syndrome
Gupta PK, Barak S, Feuermann Y, Goobes G and Kaphzan H
Angelman syndrome (AS) is a rare neurodevelopmental genetic disorder caused by the loss of function of the ubiquitin ligase E3A (UBE3A) gene, affecting approximately 1:15,000 live births. We have recently shown that mitochondrial function in AS is altered during mid to late embryonic brain development leading to increased oxidative stress and enhanced apoptosis of neural precursor cells. However, the overall alterations of metabolic processes are still unknown. Hence, as a follow-up, we aim to investigate the metabolic profiles of wild-type (WT) and AS littermates and to identify which metabolic processes are aberrant in the brain of AS model mice during embryonic development.
Correction: Differentially altered social dominance- and cooperative-like behaviors in Shank2- and Shank3-mutant mice
Han KA, Yoon TH, Shin J, Um JW and Ko J
Spontaneous instrumental approach-avoidance learning in social contexts in autism
Beaurenaut M, Kovarski K, Destais C, Mennella R and Grèzes J
Individuals with Autism Spectrum Condition (ASC) are characterized by atypicalities in social interactions, compared to Typically Developing individuals (TD). The social motivation theory posits that these difficulties stem from diminished anticipation, reception, and/or learning from social rewards. Although learning from socioemotional outcomes is core to the theory, studies to date have been sparse and inconsistent. This possibly arises from a combination of theoretical, methodological and sample-related issues. Here, we assessed participants' ability to develop a spontaneous preference for actions that lead to desirable socioemotional outcomes (approaching/avoiding of happy/angry individuals, respectively), in an ecologically valid social scenario. We expected that learning abilities would be impaired in ASC individuals, particularly in response to affiliative social feedback.