Fourier Synthesis Dispersion Engineering of Photonic Crystal Microrings for Broadband Frequency Combs
Dispersion engineering of microring resonators is crucial for optical frequency comb applications, to achieve targeted bandwidths and powers of individual comb teeth. However, conventional microrings only present two geometric degrees of freedom - width and thickness - which limits the degree to which dispersion can be controlled. We present a technique where we tune individual resonance frequencies for arbitrary dispersion tailoring. Using a photonic crystal microring resonator that induces coupling to both directions of propagation within the ring, we investigate an intuitive design based on Fourier synthesis. Here, the desired photonic crystal spatial profile is obtained through a Fourier relationship with the targeted modal frequency shifts, where each modal shift is determined based on the corresponding effective index modulation of the ring. Experimentally, we demonstrate several distinct dispersion profiles over dozens of modes in transverse magnetic polarization. In contrast, we find that the transverse electric polarization requires a more advanced model that accounts for the discontinuity of the field at the modulated interface. Finally, we present simulations showing arbitrary frequency comb spectral envelope tailoring using our Frequency synthesis approach.
Measurement of coherent vibrational dynamics with X-ray Transient Absorption Spectroscopy simultaneously at the Carbon K- and Chlorine L- edges
X-ray Transient Absorption Spectroscopy (XTAS) is a powerful probe for ultrafast molecular dynamics. The evolution of XTAS signal is controlled by the shapes of potential energy surfaces of the associated core-excited states, which are difficult to directly measure. Here, we study the vibrational dynamics of Raman activated CCl with XTAS targeting the C 1s and Cl 2p electrons. The totally symmetric stretching mode leads to concerted elongation or contraction in bond lengths, which in turn induce an experimentally measurable red or blue shift in the X-ray absorption energies associated with inner-shell electron excitations to the valence antibonding levels. The ratios between slopes of different core-excited potential energy surfaces (CEPESs) thereby extracted agree very well with Restricted Open-Shell Kohn-Sham calculations. The other, asymmetric, modes do not measurably contribute to the XTAS signal. The results highlight the ability of XTAS to reveal coherent nuclear dynamics involving < 0.01 Å atomic displacements and also provide direct measurement of forces on CEPESs.
Quantifying metadata relevance to network block structure using description length
Network analysis is often enriched by including an examination of node metadata. In the context of understanding the mesoscale of networks it is often assumed that node groups based on metadata and node groups based on connectivity patterns are intrinsically linked. This assumption is increasingly being challenged, whereby metadata might be entirely unrelated to structure or, similarly, multiple sets of metadata might be relevant to the structure of a network in different ways. We propose the metablox tool to quantify the relationship between a network's node metadata and its mesoscale structure, measuring the strength of the relationship and the type of structural arrangement exhibited by the metadata. We show on a number of synthetic and empirical networks that our tool distinguishes relevant metadata and allows for this in a comparative setting, demonstrating that it can be used as part of systematic meta analyses for the comparison of networks from different domains.
Double exchange interaction in Mn-based topological kagome ferrimagnet
Recently discovered Mn-based kagome materials, such as RMnSn (R = rare-earth element), exhibit the coexistence of topological electronic states and long-range magnetic order, offering a platform for studying quantum phenomena. However, understanding the electronic and magnetic properties of these materials remains incomplete. Here, we investigate the electronic structure and magnetic properties of GdMnSn using x-ray magnetic circular dichroism, photoemission spectroscopy, and theoretical calculations. We observe localized electronic states from spin frustration in the Mn-based kagome lattice and induced magnetic moments in the nonmagnetic element Sn experimentally, which originate from the Sn- and Mn- orbital hybridization. Our calculations also reveal ferromagnetic coupling within the kagome Mn-Mn layer, driven by double exchange interaction. This work provides insights into the mechanisms of magnetic interaction and magnetic tuning in the exploration of topological quantum materials.
Long-range phase coherence and tunable second order -Josephson effect in a Dirac semimetal 1T-PtTe
Superconducting diode effects have recently attracted much attention for their potential applications in superconducting logic circuits. Several pathways have been proposed to give rise to non-reciprocal critical currents in various superconductors and Josephson junctions. In this work, we establish the presence of a large Josephson diode effect in a type-II Dirac semimetal 1T-PtTe facilitated by its helical spin-momentum locking and distinguish it from extrinsic geometric effects. The magnitude of the Josephson diode effect is shown to be directly correlated to the large second-harmonic component of the supercurrent. We denote such junctions, where the relative phase between the two harmonics can be tuned by a magnetic field, as 'tunable second order -junctions'. The direct correspondence between the second harmonic supercurrents and the diode effect in 1T-PtTe junctions at relatively low magnetic fields makes it an ideal platform to study the Josephson diode effect and Cooper quartet transport in Josephson junctions.
Liquid-liquid phase separation driven by charge heterogeneity
Despite the intrinsic charge heterogeneity of proteins plays a crucial role in the liquid-liquid phase separation (LLPS) of a broad variety of protein systems, our understanding of the effects of their electrostatic anisotropy is still in its early stages. We approach this issue by means of a coarse-grained model based on a robust mean-field description that extends the DLVO theory to non-uniformly charged particles. We numerically investigate the effect of surface charge patchiness and net particle charge on varying these features independently and with the use of a few parameters only. The effect of charge anisotropy on the LLPS critical point is rationalized via a thermodynamic-independent parameter based on orientationally averaged pair properties, that estimates the particle connectivity and controls the propensity of the liquid phase to condensate. We show that, even though directional attraction alone is able to lower the particle bonding valence-thus shifting the critical point towards lower temperatures and densities-directional repulsion significantly and systematically diminishes the particle functionality, thus further reducing the critical parameters. This electrostatically-driven shift can be understood in terms of the additional morphological constraints introduced by the directional repulsion, that hinder the condensation of dense aggregates.
Exploring the potential of self-pulsing optical microresonators for spiking neural networks and sensing
Photonic platforms are promising for implementing neuromorphic hardware due to their high processing speed, low power consumption, and ability to perform parallel processing. A ubiquitous device in integrated photonics, which has been extensively employed for the realization of optical neuromorphic hardware, is the microresonator. The ability of CMOS-compatible silicon microring resonators to store energy enhances the nonlinear interaction between light and matter, enabling energy efficient nonlinearity, fading memory and the generation of spikes via self-pulsing. In the self-pulsing regime, a constant input signal can be transformed into a time-dependent signal based on pulse sequences. Previous research has shown that self-pulsing enables the microresonator to function as an energy-efficient artificial spiking neuron. Here, we extend the experimental study of single and coupled microresonators in the self-pulsing regime to confirm their potential as building blocks for scalable photonic spiking neural networks. Furthermore, we demonstrate their potential for introducing all-optical long-term memory and event detection capabilities into integrated photonic neural networks. In particular, we show all-optical long-term memory up to at least 10 s and detection of input spike rates, which is encoded into different stable self-pulsing dynamics.
Monolithic optical resonator for ultrastable laser and photonic millimeter-wave synthesis
Optical resonators are indispensable tools in optical metrology that usually benefit from an evacuated and highly-isolated environment to achieve peak performance. Even in the more sophisticated design of Fabry-Perot (FP) cavities, the material choice limits the achievable quality factors. For this reason, monolithic resonators are emerging as promising alternative to traditional designs, but their design is still at preliminary stage and far from being optimized. Here, we demonstrate a monolithic FP resonator with 4.5 cm volume and 2 × 10 finesse. In the ambient environment, we achieve 18 Hz integrated laser linewidth and 7 × 10 frequency stability measured from 0.08 s to 0.3 s averaging time, the highest spectral purity and stability demonstrated to date in the context of monolithic reference resonators. By locking two separate lasers to distinct modes of the same resonator, a 96 GHz microwave signals is generated with phase noise -100 dBc/Hz at 10 kHz frequency offset, achieving orders of magnitude improvement in the approach of photonic heterodyne synthesis. The compact monolithic FP resonator is promising for applications in spectrally-pure, high-frequency microwave photonic references as well as optical clocks and other metrological devices. ©2024. All rights reserved.
30 years of the quantum cascade laser
It was January 1994, when the first quantum cascade laser (QCL) displayed laser action in Bell Laboratories. During these 30 years the QCL evolved incessantly, from a lab curiosity to the main on-chip source of coherent radiation in the Mid-IR and THz ranges. The journey has seen an impressive development of the QCL in several fields of laser physics and its applications, with a steady growth of research groups and companies worldwide.
Topological transition in filamentous cyanobacteria: from motion to structure
Many active systems are capable of forming intriguing patterns at scales significantly larger than the size of their individual constituents. Cyanobacteria are one of the most ancient and important phyla of organisms that has allowed the evolution of more complex life forms. Despite its importance, the role of motility on the pattern formation of their colonies is not understood. Here, we investigate the large-scale collective effects and rich dynamics of gliding filamentous cyanobacteria colonies, while still retaining information about the individual constituents' dynamics and their interactions. We investigate both the colony's transient and steady-state dynamics and find good agreement with experiments. We furthermore show that the Péclet number and aligning interaction strength govern the system's topological transition from an isotropic distribution to a state of large-scale reticulate patterns. Although the system is topologically non-trivial, the parallel and perpendicular pair correlation functions provide structural information about the colony, and thus can be used to extract information about the early stages of biofilm formation. Finally, we find that the effects of the filaments' length cannot be reduced to a system of interacting points. Our model proves to reproduce both cyanobacteria colonies and systems of biofilaments where curvature is transported by motility.
Laser excitation of the 1-2 transition in singly-ionized helium
Laser spectroscopy of atomic hydrogen and hydrogen-like atoms is a powerful tool for tests of fundamental physics. The 1-2 transition of hydrogen in particular is a cornerstone for stringent Quantum Electrodynamics (QED) tests and for an accurate determination of the Rydberg constant. We report laser excitation of the 1-2 transition in singly-ionized helium (He), a hydrogen-like ion with much higher sensitivity to QED than hydrogen itself. The transition requires two-photon excitation in the challenging extreme ultraviolet wavelength range, which we achieve with a tabletop coherent laser system suitable for precision spectroscopy. The transition is excited by combining an ultrafast amplified pulse at 790 nm (derived from a frequency comb laser) with its 25th harmonic at 32 nm (produced by high-harmonic generation). The results are well described by our simulations and we achieve a sizable 2S excitation fraction of 10 per pulse, paving the way for future precision studies.
Collective excitations and low-energy ionization signatures of relativistic particles in silicon detectors
Solid-state detectors with a low energy threshold have several applications, including searches of non-relativistic halo dark-matter particles with sub-GeV masses. When searching for relativistic, beyond-the-Standard-Model particles with enhanced cross sections for small energy transfers, a small detector with a low energy threshold may have better sensitivity than a larger detector with a higher energy threshold. In this paper, we calculate the low-energy ionization spectrum from high-velocity particles scattering in a dielectric material. We consider the full material response including the excitation of bulk plasmons. We generalize the energy-loss function to relativistic kinematics, and benchmark existing tools used for halo dark-matter scattering against electron energy-loss spectroscopy data. Compared to calculations commonly used in the literature, such as the Photo-Absorption-Ionization model or the free-electron model, including collective effects shifts the recoil ionization spectrum towards higher energies, typically peaking around 4-6 electron-hole pairs. We apply our results to the three benchmark examples: millicharged particles produced in a beam, neutrinos with a magnetic dipole moment produced in a reactor, and upscattered dark-matter particles. Our results show that the proper inclusion of collective effects typically enhances a detector's sensitivity to these particles, since detector backgrounds, such as dark counts, peak at lower energies.
Direct measurement of three different deformations near the ground state in an atomic nucleus
Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in Pb. Contrary to earlier interpretations, we associate the collective yrast band as predominantly oblate, while the non-yrast band with higher collectivity follows characteristics of more deformed, predominantly prolate bands. Direct measurement of the transition and - coincidence relations allowed us to locate and firmly assign the state in the level scheme and to discover a spherical state at 1281(1) keV with W.u. These assignments are based purely on observed transition probabilities and monopole strength values, and do not rely on model calculations for their interpretation.
Non-equilibrium formation and relaxation of magnetic flux ropes at kinetic scales
Magnetic flux ropes are pivotal structures and building blocks in astrophysical and laboratory plasmas, and various equilibrium models have thus been studied in the past. However, flux ropes in general form at non-equilibrium, and their pathway from formation to relaxation is a crucial process that determines their eventual properties. Here we show that any localized current parallel to a background magnetic field will evolve into a flux rope via non-equilibrium processes. The detailed kinetic dynamics are exhaustively explained through single-particle and Vlasov analyses and verified through particle-in-cell simulations. This process is consistent with many proposed mechanisms of flux rope generation such as magnetic reconnection. A spacecraft observation of an example flux rope is also presented; by invoking the non-equilibrium process, its structure and properties can be explicated down to all six components of the temperature tensor.
Spontaneous flows and quantum analogies in heterogeneous active nematic films
Incorporating the inherent heterogeneity of living systems into models of active nematics is essential to provide a more realistic description of biological processes such as bacterial growth, cell dynamics and tissue development. Spontaneous flow of a confined active nematic is a fundamental feature of these systems, in which the role of heterogeneity has not yet been considered. We therefore determine the form of spontaneous flow transition for an active nematic film with heterogeneous activity, identifying a correspondence between the unstable director modes and solutions to Schrödinger's equation. We consider both activity gradients and steps between regions of distinct activity, finding that such variations can change the signature properties of the flow. The threshold activity required for the transition can be raised or lowered, the fluid flux can be reduced or reversed and interfaces in activity induce shear flows. In a biological context fluid flux influences the spread of nutrients while shear flows affect the behaviour of rheotactic microswimmers and can cause the deformation of biofilms. All the effects we identify are found to be strongly dependent on not simply the types of activity present in the film but also on how they are distributed.
Enhancing shift current response via virtual multiband transitions
Materials exhibiting a significant shift current response could potentially outperform conventional solar cell materials. The myriad of factors governing shift-current response, however, poses significant challenges in finding such strong shift-current materials. Here we propose a general design principle that exploits inter-orbital mixing to excite virtual multiband transitions in materials with multiple flat bands to achieve an enhanced shift current response. We further relate this design principle to maximizing Wannier function spread as expressed through the formalism of quantum geometry. We demonstrate the viability of our design using a 1D stacked Rice-Mele model. Furthermore, we consider a concrete material realization - alternating angle twisted multilayer graphene (TMG) - a natural platform to experimentally realize such an effect. We identify a set of twist angles at which the shift current response is maximized via virtual transitions for each multilayer graphene and highlight the importance of TMG as a promising material to achieve an enhanced shift current response at terahertz frequencies. Our proposed mechanism also applies to other 2D systems and can serve as a guiding principle for designing multiband systems that exhibit an enhanced shift current response.
Quantum switch instabilities with an open control
The superposition of causal orders shows promise in various quantum technologies. However, the fragility of quantum systems arising from environmental interactions, leading to dissipative behavior and irreversibility, demands a deeper understanding of the possible instabilities in the coherent control of causal orders. In this work, we employ a collisional model to investigate the impact of an open control system on the generation of interference between two causal orders. We present the environmental instabilities for the switch of two arbitrary quantum operations and examine the influence of environmental temperature on each potential outcome of control post-selection. Additionally, we explore how environmental instabilities affect protocol performance, including switching between mutually unbiased measurement observables and refrigeration powered by causal order superposition, providing insights into broader implications.
Enhanced emergent electromagnetic inductance in TbSb due to highly disordered helimagnetism
In helimagnetic metals, ac current-driven spin motions can generate emergent electric fields acting on conduction electrons, leading to emergent electromagnetic induction (EEMI). Recent experiments reveal the EEMI signal generally shows a strongly current-nonlinear response. In this study, we investigate the EEMI of TbSb, a short-period helimagnet. Using small angle neutron scattering we show that TbSb hosts highly disordered helimagnetism with a distribution of spin-helix periodicity. The current-nonlinear dynamics of the disordered spin helix in TbSb indeed shows up as the nonlinear electrical resistivity (real part of ac resistivity), and even more clearly as a nonlinear and huge EEMI (imaginary part of ac resistivity) response. The magnitude of the EEMI reaches as large as several tens of μH for Tb5Sb3 devices on the scale of several tens of μm, originating to noncollinear spin textures possibly even without long-range helimagnetic order.
Unveiling nodeless unconventional superconductivity proximate to honeycomb-vacancy ordering in the Ir-Sb binary system
Vacancies in solid-state physics are underexplored in materials with strong electron-electron correlations. Recent research on the Ir-Sb binary system revealed an extended buckled-honeycomb vacancy (BHV) order. Superconductivity arises by suppressing BHV ordering through high-pressure growth with excess Ir atoms or Rh substitution, yet the superconducting pairing nature remains unknown. To explore this, we conducted muon spin rotation experiments on Ir Sb (synthesized at 5.5 GPa, = 4.2 K) and ambient pressure synthesized optimally Rh-doped Ir Rh Sb (=0.3, = 2.7 K). The exponential temperature dependence of the superfluid density suggests a fully gapped superconducting state exists in both samples. The ratio of to the superfluid density resembles that of unconventional superconductors. A significant increase in the superfluid density in the high-pressure synthesized sample correlates with , indicating that unconventional superconductivity is intrinsic to the Ir-Sb binary system. These findings, along with the dome-shaped phase diagram, highlight IrSb as the first unconventional superconducting parent phase with ordered vacancies, requiring further theoretical investigations.
The Extremely Brilliant Source storage ring of the European Synchrotron Radiation Facility
The Extremely Brilliant Source (EBS) is the experimental implementation of the novel Hybrid Multi Bend Achromat (HMBA) storage ring magnetic lattice concept, which has been realised at European Synchrotron Radiation Facility. We present its successful commissioning and first operation. We highlight the strengths of the HMBA design and compare them to the previous designs, on which most operational synchrotron X-ray sources are based. We report on the EBS storage ring's significantly improved horizontal electron beam emittance and other key beam parameters. EBS extends the reach of synchrotron X-ray science confirming the HMBA concept for future facility upgrades and new constructions.
Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints
Two-dimensional materials with flat electronic bands are promising for realising exotic quantum phenomena such as unconventional superconductivity and nontrivial topology. However, exploring their vast chemical space is a significant challenge. Here we introduce elf, an unsupervised convolutional autoencoder that encodes electronic band structure images into fingerprint vectors, enabling the autonomous clustering of materials by electronic properties beyond traditional chemical paradigms. Unsupervised visualisation of the fingerprint space then uncovers hidden chemical trends and identifies promising candidates based on similarities to well-studied exemplars. This approach complements high-throughput ab initio methods by rapidly screening candidates and guiding further investigations into the mechanisms underlying flat-band physics. The elf autoencoder is a powerful tool for autonomous discovery of unexplored flat-band materials, enabling unbiased identification of compounds with desirable electronic properties across the 2D chemical space.