Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion
This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing.
Posaconazole nanocrystals dry powder inhalers for the local treatment of invasive pulmonary aspergillosis
Invasive pulmonary aspergillosis poses a significant threat to immunocompromised patients, characterized by high mortality rates. Posaconazole (PSZ), a second-generation triazole antifungal, exhibits broad-spectrum activity but suffers from limited pulmonary concentrations and notable systemic side effects when administered orally or intravenously. This study focuses on optimizing PSZ nanocrystals-agglomerated particles for dry powder inhalers (DPIs) to enhance solubility, dissolution rates, and pulmonary deposition, ultimately improving therapeutic efficacy while minimizing systemic adverse effects. We employed wet medium milling and spray-drying techniques to formulate PSZ nanocrystals-agglomerated DPIs. Various stabilizers including HPMC, HPC, Soluplus, and PVPK30, were systematically evaluated to optimize physicochemical properties. Aerosolization performance was assessed using the Next Generation Impactor, while antifungal efficacy was evaluated through in vitro and in vivo studies. The optimized PSZ DPIs demonstrated significant enhancements in solubility and dissolution rates, with a fine particle fraction (FPF) of 78.58 ± 3.21%, ensuring optimal lung delivery. In vitro experiments revealed potent effects with minimal cytotoxicity to lung cells. In vivo studies indicated that the optimized formulation achieved a C/AUC ratio in lung tissues that was 27.32 and 6.76-fold higher than that of the oral suspension, highlighting increased local drug concentrations. This approach presents a scalable, cost-effective strategy for the pulmonary delivery of PSZ, ensuring high drug loading and promising clinical outcomes in treating pulmonary fungal infections.
Biodegradable lipid bilayer-assisted indocyanine green J- aggregates for photothermal therapy: Formulation, in vitro toxicity and in vivo clearance
Indocyanine green (ICG) J-aggregates (IJA) are a unique form of aggregation that exhibits superior properties to monomeric ICG. Despite their higher photoacoustic (PA) signals for imaging and heating stability during photothermal therapy (PTT), they exhibit low stability under a biological milieu. Our group previously proposed a simple procedure for in-situ preparation of IJA into liposomes, accelerating their formation and optical properties. To comprehend their potential applications, we systematically investigated the effect of the lipid bilayer composition on ICG J-aggregation and stability. Moreover, their in vitro compatibility and photothermal toxicity in monolayers and cancer spheroids, besides their in vivo biodistribution and clearance were evaluated. Our findings revealed the importance of high cholesterol and PEG-lipid content and low charged lipids (∼ 5 mol %) in liposomes to promote a high IJA/ICG ratio and, thus, high heating stability. More importantly, IJA-liposomes revealed high biocompatibility in monolayer and cancer spheroids with efficient photothermal toxicity. Finally, IJA-liposomes were cleared from the body without toxicity. Interestingly, IJA-liposomes mainly showed lower affinity to the liver than monomeric ICG, resulting in higher renal clearance. Overall, our biodegradable IJA-liposomes could be an excellent alternative to gold-based agents suitable for PA imaging and cancer PTT.
Optimising 3D printed medications for rare diseases: In-line mass uniformity testing in direct powder extrusion 3D printing
Biotinidase deficiency is a rare inherited disorder characterized by biotin metabolism issues, leading to neurological and cutaneous symptoms that can be alleviated through biotin administration. Three-dimensional (3D) printing (3DP) offers potential for personalized medicine production for rare diseases, due to its flexibility in designing dosage forms and controlling release profiles. For such point-of-care applications, rigorous quality control (QC) measures are essential to ensure precise dosing, optimal performance, and product safety, especially for low personalized doses in preclinical and clinical studies. In this work, we addressed QC challenges by integrating a precision balance into a direct powder extrusion pharmaceutical 3D printer (M3DIMAKER™) for real-time, in-line mass uniformity testing, a critical quality control step. Small and large capsule-shaped biotin printlets (3D printed tablets) for immediate- and extended-release were printed. The integrated balance monitored and registered each printlet's weight, identifying any deviations from acceptable limits. While all large printlet batches met mass uniformity criteria, some small printlet batches exhibited weight deviations. In vitro release studies showed large immediate-release printlets releasing 82% of biotin within 45 min, compared to 100% for small immediate-release printlets. For extended-release formulations, 35% of the drug was released from small printlets, whereas 24% was released from large printlets at the same time point. The integration of process analytical technology tools in 3DP shows promise in enhancing QC and scalability of personalized dosing at the point-of-care, demonstrating successful integration of a balance into a direct powder extrusion 3D printer for in-line mass uniformity testing across different sizes of capsule-shaped printlets.
Dose sparing enabled by immunization with influenza vaccine using orally dissolving film
Influenza vaccine delivered by orally dissolving film vaccine (ODFV) is a promising approach. In this study, we generated three ODFVs each comprising pulluan and trehalose with different doses of inactivated A/Puerto Rico/8/34, H1N1 virus (ODFV I, II, III) to evaluate their dose-sparing effect in mice. The ODFVs were placed on the tongues of mice to elicit immunization and after 3 immunizations at 4-week intervals, mice were challenged with a lethal dose of A/PR/8/34 to assess vaccine-induced protection. The 3 ODFVs containing 50, 250, or 750 μg of inactivated viruses elicited virus-specific antibody responses and virus neutralization in a dose-dependent manner. Dose-dependent antibody responses were also observed from the mucosal tissue samples, and also from antibody-secreting cells of the lungs and spleens. ODFV-induced cellular immunity, particularly germinal center B cells and T cells were also dose-dependent. Importantly, all 3 ODFVs evaluated in this study provided complete protection by strongly suppressing the pro-inflammatory cytokine production and lung virus titers. None of the immunized mice underwent noticeable weight loss nor succumbed to death, a phenomenon that was only observed in the infection challenge controls. These results indicated that the protection conferred by a low dose influenza vaccine formulated in ODF is comparable to that of a high-dose vaccine, thereby enabling vaccine dose sparing effect.
Effects of buffers on spray-freeze-dried/lyophilized high concentration protein formulations
Solid-state protein formulations are known to exhibit enhanced storage stability compared to their liquid dosage form counterparts. pH is one of the factors affecting the stability of protein formulations. The pH of protein formulations in the solution could be influenced by the buffer used, directly impacting their solid-state stability. During lyophilization, buffer components may interact with other formulation components present in the protein formulations, causing a pH shift. This study aimed to investigate the effects of phosphate buffer and amino acid buffers (such as histidine and/or arginine) on the physical properties and accelerated storage stability of spray freeze-dried or lyophilized protein formulations. A model protein, bovine serum albumin (BSA), was used to prepare high-concentration protein formulations. The formulations consisted of BSA, trehalose, and mannitol in an 80:15:5 ratio (w/w), respectively. Various buffers were utilized in the preparation of protein formulations, and the resultant solid formulations underwent screening via accelerated stability study using size exclusion chromatography (SEC). The combination of phosphate and arginine buffers resulted in increased monomer loss in the accelerated storage stability study. Additional characterizations, including solid-state Fourier transform infrared spectroscopy (ssFTIR) and powder X-ray diffraction (PXRD), were conducted. While these analyses did not definitively elucidate the mechanism behind the observed instability, their outcomes provide valuable insights for further investigation, highlighting the need for future research in this area.
Cyclodextrin complexation as a fruitful strategy for improving the performance of nebivolol delivery from solid lipid nanoparticles
Oral bioavailability of nebivolol (NEB), a highly-selective β1-adrenergic receptor antagonist specially used in hypertension treatment, is limited by its low aqueous solubility. In this work we investigated the possibility of developing a new effective oral formulation of NEB by exploiting a combined strategy based on NEB complexation with hydroxypropyl-βCyclodextrin (HPβCD) and complex incorporation into solid lipid nanoparticles (SLNs). Solubility studies enabled to choose Imwitor 491 and 988 as solid lipids for SLN preparation. The effect of their separated or combined use, at different amounts, and of different surfactants on nanoparticles dimensions, homogeneity and surface charge was examined. The best formulations were selected for drug loading, as such or as complex with HPβCD, and evaluated for physicochemical properties, morphology, entrapment efficiency and drug release. A comparison of the two kinds of formulations revealed that the presence of HPβCD improved SLNs quality in terms of reduced dimensions, higher homogeneity and greater physicochemical stability, avoiding the sharp Zeta Potential reduction observed when loading the plain drug; moreover, it allowed a marked increase in entrapment efficiency and better control of drug release. Furthermore, the use of HPβCD gave the opportunity of doubling drug loading without noticeable variations in SLNs physicochemical properties and maintaining excellent entrapment efficiency.
Towards the discovery of unrevealed flufenamic acid cocrystals via structural resemblance for enhanced topical drug delivery
Cocrystallization has emerged as a promising formulation strategy for modulating transdermal drug absorption by enhancing solubility and permeability. However, challenges related to cocrystal dissociation in the semi-solid state need to be addressed to mitigate regulatory concerns before the widespread implementation of topical cocrystal products in clinical practice. This study aimed to develop oil-based topical formulations incorporating cocrystals with distinct thermodynamic stabilities, followed by investigating the roles of different structurally similar coformers and oily vehicles on their physicochemical properties. Three pharmaceutical cocrystals of poorly water-soluble flufenamic acid (FFA) were synthesized with isomeric pyridine carboxamides in a 1:1 stoichiometry via rapid solvent removal. These included the reported flufenamic acid-nicotinamide cocrystal (FFA-NIC), the long-elusive flufenamic acid-isonicotinamide cocrystal (FFA-IST) and flufenamic acid-picolinamide cocrystal (FFA-PIC). The resulting cocrystals, which exhibited different hydrogen bonding patterns, were characterized using powder X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, and structural analysis through single crystal X-ray diffraction. The cocrystals were further formulated in a series of oleaginous and absorption bases, including liquid paraffin, Vaseline, lanolin, and theobroma oil, for topical delivery. The cocrystal dissociation, content uniformity, and in vitro membrane diffusion were assessed. Notably, although all FFA cocrystals exhibited thermodynamic instability in aqueous solution, a significantly reduced propensity for cocrystal dissociation was observed in the ointment bases. Integrated computational analyses of packing efficiency and interaction energy revealed that the thermodynamic stability of cocrystals followed a descending order of FFA-NIC > FFA-PIC > FFA-IST. Compared with raw FFA, FFA-IST and FFA-PIC, which had larger positive ΔV and ΔE, achieved superior cumulative diffusion of FFA from Vaseline, with a 4.3-fold (p = 0.0003) and 3.3-fold (p = 0.0029) increase at 6 h in a Franz diffusion cell model, respectively. The diffusion of all FFA cocrystals mainly followed the Higuchi kinetic model and was positively correlated with the intrinsic dissolution rate.
Machine learning strengthened formulation design of pharmaceutical suspensions
Many different formulation strategies have been investigated to oppose suboptimal treatment of long-term or chronic conditions, one of which are the nano- and microsuspensions prepared as long-acting injectables to prolong the release of an active pharmaceutical compound for a defined period of time by regulating the size of particles by milling. Typically, surfactant and/or polymers are added in the dispersion medium of the suspension during processing for stabilization purposes. However, current formulation investigations with milling are heavily based on prior expertise and trial-and-error approaches. Various interacting parameters such as the milling bead size, stabilizer type and concentration have confounded the investigation of milling process. The present study systematically exploited statistical and machine learning (ML) strategies to understand the relationship between suspension characteristics and formulation parameters under full-factorial milling experiments. Stabilizer concentration was identified as a significant factor (p < 0.001) for median suspension diameter (D). A formulation stability classification ML model with high prediction accuracy (0.91) and F1-score (0.91) under 10-fold cross-validation was constructed based on 72 formulation datapoints. Model interpretation through Shapley additive explanations (SHAP) revealed the prominent impact of stabilizer concentration and milling bead size on formulation stability. The present work demonstrated the potential to achieve a deeper understanding of the design and optimization of nano- and microsuspensions through explainable ML modelling on formulation screening data.
Solution-mediated phase transformation of cocrystals at the solid-liquid interface: Relationships between the supersaturation generation rate and transformation pathway
Cocrystals easily undergo solution-mediated phase transformation at the surface of dissolving cocrystals during dissolution, which significantly deteriorates the solubility advantage of cocrystals. Here, a new scenario for the phase transformation of liquiritigenin (LQ) cocrystals in which the boundary of phase transformation diffuses along the surface to the bulk of the cocrystal was identified. Additionally, depending on the rate of supersaturation generation, phase transformation processes to the anhydrate and hydrate of LQ compete during cocrystal dissolution. The liquiritigenin - nicotinamide (LQ - NIC) cocrystal yielded a higher supersaturation rate, causing the nucleation kinetics to dominate the recrystallization process and the formation of a metastable form of LQ. However, in the liquiritigenin - isoniazid (LQ - INZ) cocrystal, the low supersaturation rate leading to recrystallization was controlled by thermodynamics and the subsequent formation of monohydrates of LQ (less soluble). As a result, in plain buffer, a multistep pathway for phase transformation of the LQ - NIC cocrystal was observed, in which the cocrystal was first converted into the anhydrate LQ (metastable form) and subsequently transformed into LQ·HO. A one-step phase transformation was observed for the LQ - INZ cocrystal, where the cocrystal was directly converted to LQ·HO. In a buffer containing the Eudragit E100 additive, for the LQ - NIC cocrystal, the dissolution performance improved, which can presumably be attributed to the solubilization effect of E100 on the anhydrate and the inhibitory effect on the transformation of the anhydrate to the monohydrate. However, for the LQ - INZ cocrystal, a negligible improvement in drug concentration was observed in the presence of E100 because of the slight effects of E100 on the solubility of LQ·HO. These findings provide valuable insights into the phase transformation pathways of cocrystals at the liquid-solid interface and the effects of additives on the dissolution behavior of cocrystals.
A four in one nanoplatform: Theranostic bismuth-containing nanoMOFs for chemo-photodynamic- radiation therapy and CT scan imaging
Integration of different therapeutic performances into one platform is an innovative development for using multiple applications in real-time. In this paper, for the first time we exploited the concurrent capacity of radio and photosensitizing in a theranostic nanoMOFs based on bismuth, zirconium, and porphyrin. The porosity of nanoMOFs provided the capability of doxorubicin loading and chemotherapy besides enhanced photodynamic and radiation therapy (PDT & RT). Its PEGylation and aptamer (MUC1) immobilization endowed the platform with high biocompatibility and targeted tumor killing, respectively. In vitro assay exhibited that this aptamer immobilized DOX-loaded PEGylated MOF (Apt@DOX) produced more toxicity against 4 T1 cells compared to non-targeted nanoparticles (NP@DOX), especially when the treatment combined with PDT or/and RT. In vivo experiment also provided great results for tumor growth, survival rate, and body weight for 4 T1 bearing mice injected by Apt@DOX in combination with irradiation by 660 nm laser and/or exposure to 3 Gy dosage of X-ray radiation. The CT imaging of injected mice with targeted and non-targeted bismuth-based MOF introduced this nanoplatform as a promising CT contrast agent. Resultantly, we can present our as-synthesized nanoplatform as an efficient multifunctional theranostics with the ability of multimodal therapy and diagnostic performance.
Human and canine osteosarcoma cell lines: How do they react upon incubation with calcium phosphate-coated lipid nanoparticles carrying doxorubicin and curcumin?
Osteosarcoma (OSA) is a bone cancer that affects both humans and animals, with dogs being particularly vulnerable. Standard therapy is often limited by multidrug resistance (MDR), primarily due to the overexpression of P-glycoprotein (P-gp), which expels drugs from the cells, reducing their efficacy. To overcome this challenge, drug delivery systems (DDS) and P-gp modulators have been explored. However, developing DDS that selectively target cancer cells remains difficult, with many current options lacking efficiency. Our research group has recently developed an innovative type of nanoparticle with a lipid core and a calcium phosphate shell (CaP-NPs), which enhances the uptake of doxorubicin (DOXO) in OSA cells. In this study, we loaded a lipophilic ester of doxorubicin (C12DOXO) and curcumin (CURC), a natural P-gp modulator, into CaP-NPs and co-incubated them into human and canine OSA cell lines, including DOXO-resistant cells. The results demonstrated a significant reduction in viability in human OSA cells. Additionally, the combination treatment led to a further increase in C12DOXO retention when cells were also treated with the P-gp inhibitor verapamil, indicating enhanced efficacy against MDR mechanisms. Notably, canine OSA cells exhibited a distinct response pattern, suggesting the presence of species-specific differences that warrant further investigation.
Hyaluronan-Cholesterol nanogels embedding betamethasone for the treatment of skin inflammatory conditions
Topical application of the glucocorticoid betamethasone (BM) is a common treatment for inflammatory-related skin diseases, such as psoriasis. However, enhancing its bioavailability remains challenging due to poor skin permeability. Herein, we developed and evaluated hyaluronan-cholesterol (HACH) based nanohydrogel systems (NHs) and NHs-Carbopol formulation for dermal delivery of BM. Various parameters were investigated including particle size, surface charge, encapsulation efficiency, in vitro drug release kinetics and stability. The HACH-based NHs demonstrated high encapsulation efficiency, with apparent solubility improved up to 9-fold, small size (∼190 nm) and good stability at 4 ℃ and during long-term storage. Besides, the NHs-Carbopol formulation exhibited excellent rheological properties and an occlusive effect suitable for cutaneous application. Both in-vitro (using Strat-M® membrane) and ex-vivo (using pig ear skin) permeation studies revealed that these formulations significantly improved skin permeation and drug retention in the deeper layers of the epidermis and dermis, making it advantageous for the topical delivery of BM in psoriasis treatment. Moreover, the NHs system demonstrated potential anti-psoriatic activity by downregulating the proinflammatory cytokines in vitro in human keratinocytes (HaCaT cell line) and in an ex vivo 3D skin tissue model (EpiDerm-FT™).
Corrigendum to "Evaluation of binders in twin-screw wet granulation - Optimization of tabletability" [Int. J. Pharm. 659 (2024) 124290]
Liposomes-mediated enhanced antitumor effect of docetaxel with BRD4-PROTAC as synergist for breast cancer chemotherapy/immunotherapy
It has been reported that proteolysis-targeting chimeras (PROTACs) can effectively degrade intracellular oncogenic proteins, providing an ideal strategy for cancer treatment. ARV825, a bromodomain-containing protein 4 (BRD4)-PROTAC, has demonstrated the capacity to enhance the antitumor effect of the classic chemotherapeutic agent docetaxel (DTX). However, there are three major challenges to the broader in vivo application of ARV825: poor solubility, poor permeability, and off-target effects. Additionally, the efficient co-delivery of ARV825 and DTX to tumor tissues for a synergistic therapeutic effect remains unresolved. In this study, liposomes were utilized as co-delivery vehicles for ARV825 and DTX to effectively address these issues. The well-established liposomes significantly improved the solubility of both ARV825 and DTX while maintaining a sustained release profile in blood-mimetic conditions. The co-loaded liposomes accumulated in tumor tissues via the enhanced permeability and retention (EPR) effect. After internalization, ARV825 effectively degraded intracellular BRD4 proteins and downregulated the expression of both Bcl-2 and PD-L1 proteins, thereby increasing tumor cell apoptosis and enhancing the tumor immune response. This, in turn, augmented the antitumor effect of DTX in vivo without undesired side effects. In conclusion, BRD4-PROTAC may serve as a promising synergistic agent alongside the conventional chemotherapeutic agent DTX, with liposomes functioning as effective co-delivery vehicles.
Neutrophil membrane-coated nanoparticles for targeted delivery of toll-like receptor 4 siRNA ameliorate LPS-induced acute lung injury
Pulmonary delivery of small interfering RNAs (siRNAs) is an effective treatment for acute lung injury (ALI), which can modulate the expression of pro-inflammatory cytokines and alleviate the symptoms of ALI. However, the rapid degradation of siRNA in vivo and its limited ability to target and validate cells are important challenges it faces in clinical practice. In this work, we developed neutrophil membrane-coated Poly (lactic-co-glycolic acid) nanoparticles loaded with TLR4 siRNA (si-TLR4) (Neutrophil-NP-TLR4), which can target both inflammatory and macrophage cells to alleviate the pulmonary inflammation in lipopolysaccharide (LPS)-induced ALI mice. These Neutrophil-NP-TLR4 effectively reduce the TNF-α and IL-1β expressions both in vitro and in vivo. Meanwhile, they also reduced the expression of TLR4, and its downstream genes including TNF receptor-associated factor 6 (TRAF6), X-linked inhibitor of apoptosis protein (XIAP), and Nuclear Factor kappa-B (NF-κB), but elevated the levels of Aquaporin 1 (AQP1) and Aquaporin 5 (AQP5). Moreover, the Neutrophil-NP-TLR4 precisely targets the inflammatory site to attenuate the lung injury without causing toxicity to normal tissue. This system provides a promising approach to effective delivery of siRNA to precisely treat the ALI.
Exploring the impact of material selection on the efficacy of hot-melt extrusion
Hot-melt extrusion (HME) has emerged as a versatile and efficient technique in pharmaceutical formulation development, particularly for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review delves into the fundamental principles of HME, exploring its application in drug delivery systems. A comprehensive analysis of polymers utilized in HME, such as hydroxypropyl methylcellulose (HPMC), ethyl cellulose, hydroxypropyl cellulose (HPC), and polyvinylpyrrolidone (PVP), is presented, highlighting their roles in achieving controlled drug release and improved stability. The incorporation of plasticizers, such as triacetin, poly(propylene glycol), glycerol, and sorbitol, is critical in reducing the glass transition temperature (T) of polymer blends, thereby enhancing the processability of HME formulations. A comparison of T values for various polymer-plasticizer combinations is discussed using different predictive models. For researchers and industry professionals looking to optimize drug formulation strategies, this article offers valuable insights into the mechanisms through which HME enhances drug solubility and bioavailability two critical factors in oral drug delivery. Furthermore, by reviewing recent patents and marketed formulations, the article serves as a comprehensive resource for understanding both the technical advancements and commercial applications of HME. Readers will gain a deep understanding of the role of polymers and additives in HME, alongside future perspectives on how emerging materials and techniques could further revolutionize pharmaceutical development. This review is essential for those aiming to stay at the forefront of pharmaceutical extrusion technologies and their potential to improve therapeutic outcomes. The review concludes that meticulous material selection is vital for advancing pharmaceutical manufacturing processes and ensuring optimal outcomes in HME applications, thereby enhancing the overall efficacy of drug delivery systems.
Quantitative analysis of excipients to the permeability of BCS class III drugs
BCS III drugs exhibit high solubility and low permeability, and some excipients were reported to increase their permeability. Although some permeability-enhancing excipients were investigated, permeability-enhancing strategy still need to be improved. Firstly, we established a database and analyzed the possible effects of excipients. Sodium lauryl sulfate (SLS) was found to be the most-used permeability-enhancing excipients. Moreover, the quantitative models for predicting P and P of BCS III drugs with SLS were developed, and statistically meaningful descriptors include molecular weight (MW), pKa, logP, solubility, hydrogen bond (HB) count, rotatable bond count (RBC), and topological polar surface area. The models demonstrated a good fit and effective predictive capability with all the correlation R values over 0.7. Hydrogen bonding remains the most significant factor in enhancing drug permeability with SLS, while hydrophilicity is also vital in this process. It was also found that MW, logP, pKa, and RBC play significant roles in paracellular transport. In summary, current research did the systematic and quantitative analysis of BCS III drugs and their excipients, which may accelerate formulation research on BCS III products.
Tricomponent immunoactivating nanomedicine to downregulate PD-L1 and polarize macrophage for photodynamic immunotherapy of colorectal cancer
The unsatisfactory immunotherapeutic responses are primarily attributed to the insufficient immune recognition and the presence of an immunosuppressive tumor microenvironment (ITM). This study focuses on the development of a tricomponent immunoactivating nanomedicine called TIN that combines a photosensitizer, an inhibitor of epidermal growth factor receptor (EGFR) and a CSF-1R inhibitor to enable photodynamic immunotherapy by downregulating PD-L1 expression and repolarizing tumor-associated macrophages (TAMs). TIN is designed to facilitate the drug delivery and target specific pathways involved in tumor progression. By inhibiting the activity of EGFR and CSF-1R, TIN reduces PD-L1 expression on tumor cells and induces the TAMs polarization to M1 phenotype, restoring the immune recognition of T cells and the phagocytosis of macrophage to reshape the immunosuppressive microenvironment. Additionally, the photodynamic therapy (PDT) of TIN can greatly destroy the primary tumor and trigger immunogenic cell death (ICD). Importantly, the immune checkpoint blockade effect of TIN can enhance the immune response of PDT-induced ICD for metastatic tumor treatment. This study presents a self-assembling strategy for the development of an all-in-one nanomedicine, effectively integrating multiple therapeutic modalities to provide a comprehensive and systemic approach for tumor suppression.
Nanoplatform-based synergistic cancer Immuno-Chemodynamic therapy
Immunotherapy has made excellent breakthroughs in the field of cancer treatments, but faces challenges with low immunogenicity of tumor cells and an immunosuppressive tumor microenvironment (ITME). The emerging chemodynamic therapy (CDT) based on the Fenton/Fenton-like reaction can induce immunogenic cell death (ICD) to enhance tumor immunogenicity, facilitating the transition from immune-cold to immune-hot tumors. Synergistic CDT and immunotherapy based on advanced nanotechnology have shown immense promise for improving therapeutic efficacy while minimizing side effects in cancer treatment. This review summarizes and discusses recent advances in the field, with the goal of designing a high-quality nanoplatform to enhance synergistic CDT in combination with immunotherapy and lay the foundation for its future clinical translation.
Hybrid thermosensitive hydrogel/amniotic membrane structure incorporating S-nitrosothiol microparticles: Potential use for controlled nitric oxide delivery
Insufficient levels of nitric oxide may lead to chronic and acute wounds. Additionally, it is crucial that nitric oxide is prepared in a controlled release manner due to its gaseous nature and short half-life. To address this issue, utilizing nitric oxide donors, particularly S-nitrosothiols such as S-nitrosoglutathione (GSNO), could efficiently overcome instability and aid in biomedical applications. Decellularized human amniotic membranes are also best known for their anti-inflammatory, angiogenic, and antimicrobial properties to promote wound epithelization. In this study, a novel nitric oxide-generated wound dressing based on an amniotic membrane was investigated. This construct consisted of a chitosan/β-glycerophosphate thermosensitive hydrogel covered with a decellularized human amniotic layer embedded with GSNO-loaded polylactic acid microparticles. The structure of GSNO was confirmed by spectrometric, elemental, and chemical analyses. The GSNO-loaded microparticles had a diameter of 40.66 ± 6.92 µm, and an encapsulation efficiency of 45.6 ± 6.74 %. The hybrid construct and GSNO-loaded microparticles enhanced the long-term stable release of GSNO compared to free GSNO. The construct released nitric oxide ranging from 24 to 68 nM/mg during 7 days. The thermosensitive hydrogel was formed at 32.7 ± 1 °C and had a porous structure with a pore size of 41.76 ± 9.76 µm. The MTT and live/dead assays performed on human dermal fibroblast cells demonstrated suitable cell viability and adhesion to the final construct. Further, hemolysis analysis revealed less than a 5 % hemolysis rate due to negligible blood cell adhesion. Overall, the prepared hybrid construct demonstrated suitable characteristics as a potential active wound dressing capable of controlled nitric oxide delivery.