ROCK MECHANICS AND ROCK ENGINEERING

Cemented Paste Backfill Geomechanics at a Narrow-Vein Underhand Cut-and-Fill Mine
Raffaldi MJ, Seymour JB, Richardson J, Zahl E and Board M
Underhand cut-and-fill mining has allowed for the safe extraction of ore in many mines operating in weak rock or highly stressed, rockburst-prone ground conditions. However, the design of safe backfill undercuts is typically based on historical experience at mine operations and on the strength requirements derived from analytical beam equations. In situ measurements in backfill are not commonplace, largely due to challenges associated with instrumenting harsh mining environments. In deep, narrow-vein mines, large deformations and induced stresses fracture the cemented fill, often damaging the instruments and preventing long-term measurements. Hecla Mining Company and the Spokane Mining Research Division of the National Institute for Occupational Safety and Health (NIOSH) have worked collaboratively for several years to better quantify the geomechanics of cemented paste backfill (CPB), thereby improving safety in underhand stopes. A significant focus of this work has been an extensive in situ backfill instrumentation program to monitor long-term stope closure and induced backfill stress. Rugged and durable custom-designed closure meters were developed, allowing measurements to be taken for up to five successive undercuts and measuring closures of more than 50 cm and horizontal fill pressures up to 5.5 MPa. These large stope closures require the stress-strain response of the fill to be considered in design, rather than to rely solely on traditional methods of backfill span design based on intact fill strength. Furthermore, long-term instrument response shows a change in behavior after 13-14% strain, indicating a transition from shear yielding of the intact, cemented material to compaction of the porosity between sand grains, typical of uncemented sand fills. This strain-hardening behavior is important for mine design purposes, particularly for the use of numerical models to simulate regional rock support and stress redistribution. These quantitative measurements help justify long-standing assumptions regarding the role of backfill in ground support and will be useful for other mines operating under similar conditions.
A Case Study of the Collapse of Slender Pillars Affected by Through-Going Discontinuities at a Limestone Mine in Pennsylvania
Esterhuizen GS, Tyrna PL and Murphy MM
The sudden collapse of approximately 3 Ha of room-and-pillar workings at a limestone mine in southwestern Pennsylvania in 2015 resulted in an air blast that injured three mine workers. Subsequent investigations showed that an area encompassing 35 pillars had collapsed. The pillars were 9-10 m wide and up to 18 m high. A notable geologic feature is the through-going joints that dip at 50-80° and can extend from the roof to the floor of the pillars. These structures are thought to have weakened the pillars well below the strength that is predicted by empirical equations for hard-rock pillar design. This paper presents the relevant geotechnical data related to the collapsed area and numerical model results that were used to estimate the pillar loading underneath the variable topography, and compares the pillar loads to some established hard-rock pillar strength equations. The outcome is also compared to a strength equation that was developed specifically for limestone mines in which the negative impact of large angular discontinuities is explicitly accounted for. The results show that established hard-rock pillar strength equations do not adequately account for the impact of large through-going discontinuities on the strength of slender pillars. The equations would have significantly overestimated the strength of the pillars at the case study mine. The critical state of the workings would have been predicted correctly by the limestone pillar strength equation that accounts for the large discontinuities.
Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research
Murphy MM
Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.
Long-Term Stability of a 13.7 × 30.5-m (45 × 100-ft) Undercut Span Beneath Cemented Rockfill at the Turquoise Ridge Mine, Nevada
Seymour JB, Martin LA, Raffaldi MJ, Warren SN and Sandbak LA
In 2001, researchers from the National Institute for Occupational Safety and Health (NIOSH) installed instruments at the Turquoise Ridge Mine in cooperation with Placer Dome, Inc. to monitor the geomechanical behavior and stability of a cemented rockfill (CRF) sill and the surrounding host rock during test mining of a large undercut span beneath backfill. Six parallel, adjacent drifts were mined and backfilled to construct a CRF sill, approximately 22.9 m (75 ft) wide by 30.5 m (100 ft) long. The sill was then partially undercut, successfully creating a 13.7-m (45-ft) wide by 30.5-m (100-ft) long span beneath the CRF. Only small vertical displacements were measured in the overlying host rock during mining, with most of the movement occurring at shallow depths in the mine roof. Because the back above the CRF sill remained stable, the majority of the mining-induced stress was transferred to the host rock abutments rather than to the backfilled drifts. During retreat mining of the undercut span, the CRF sill and the mine roof remained stable. Most of the measured vertical displacement was caused by separation of the backfill from the overlying host rock, or deflection of the CRF sill, which was comparable to the deflection of a monolithic, elastic plate having similar dimensions, material properties, and undercut spans. The CRF sill moved in mass as a single unit rather than as individual drift segments, and the vertical cold joints between adjacent backfill drifts did not adversely affect their stability. Additional measurements collected from the instruments have shown that the backfill span is still intact and in stable condition more than 16 years after the completion of undercut mining. Displacements in the mine roof and abutments have stabilized, and vertical stress and deformation within the CRF have generally leveled off or decreased. Although only slight mining-induced loads were transferred to the backfilled drifts, the CRF has confined the abutment ribs and mine roof, thereby improving their long-term stability. Results of compressive and tensile strength tests conducted with CRF samples from the test site indicate that the long-term compressive strength gain for CRF is similar to that of concrete, and that the tensile-to-compressive strength ratio for CRF is about 1/6 rather than 1/10. Assuming the in-place CRF gained strength at the same rate as the lab samples, an analytical analysis of the flexural stability of the CRF undercut span shows that the Factor of Safety for the span should have logically increased over time. By providing a better understanding of the long-term strength properties and geomechanical behavior of CRF, these research findings help improve the methods that are used for designing stable, long-term undercut entries beneath cemented backfill.
Lithological Control on the Estimation of Uniaxial Compressive Strength by the P-Wave Velocity Using Supervised and Unsupervised Learning
Rahman T and Sarkar K
Uniaxial compressive strength (UCS) is the most fundamental physico-mechanical parameter used for any rock mass classification in geotechnical and geological engineering. However, determining UCS is a very tough, expensive, time consuming and destructive method and requires experienced workers. On the other hand, P-wave velocity ( ) determination is cheap, precise, non-destructive and easy. There are many established relationships between UCS and but mostly are low in range or proposed for multiple rock types of different origin. In this paper, the correlation of UCS with has been assessed based on the rocks' lithology. The methodology used in this analysis was centred on the previous studies database, lithology-based data disintegration and data integration to establish lithology based simple regression (SR) equations. A total of 37 previous studies databases were processed, and 12 characteristic regression equations have been determined based on the lithology. The lithological control was also determined using the principal component analysis (PCA), which categorised the data into diverse rock types. Artificial neural network (ANN) has been used as a robust predictive tool to estimate the UCS using the and rock type information.
Empirical Shaft Resistance of Driven Piles Penetrating Weak Rock
Barrett JW and Prendergast LJ
In this paper, an empirical relationship between the Unconfined Compressive Strength (UCS) of intact rock and the unit shaft resistance of piles penetrating rock is investigated. A growing number of civil engineering projects are utilizing steel piles driven into rock where a significant portion of the pile capacity is derived from the shaft resistance. Despite the growing number of projects utilizing the technology, little to no guidance is offered in the literature as to how the shaft resistance is to be calculated for such piles. A database has been created for driven piles that penetrate bedrock. The database consists of 42 pile load tests of which a majority are steel H-piles. The friction fatigue model is applied to seven of the pile load tests for which sufficient UCS data exists in order to develop an empirical relation. The focus of this paper is on case histories that include driven pipe piles with at least 2 m penetration into rock.
Introduction to Selected Contributions from the 54th US Rock Mechanics/Geomechanics Symposium, Golden, CO, 2020
Walton G and Hedayat A
HighSTEPS: A High Strain Temperature Pressure and Speed Apparatus to Study Earthquake Mechanics
Violay M, Giorgetti C, Cornelio C, Aeschiman F, Di Stefano G, Gastaldo L and Wiemer S
Estimating the Least Principal Stress in a Granitic Rock Mass: Systematic Mini-Frac Tests and Elaborated Pressure Transient Analysis
Bröker K and Ma X
The hydraulic fracturing technique (also termed mini-frac test) is commonly used to estimate the in situ stress field. We recently conducted a mini-frac stress measurement campaign in the newly-established Bedretto Underground Laboratory (BedrettoLab) in the Swiss Alps. Four vertical boreholes, dedicated for stress characterization of the granitic rock mass, hosted a total of 19 mini-frac test intervals. Systematic pressure transient analysis was performed to carefully estimate the magnitude of the least principal stress ( ). We compared five different methods (inflection point, bilinear pressure decay rate, tangent, fracture compliance, and jacking pressure) to identify an adequate approach best suited for our test scale and the host rock mass. We found that the methods used to determine the fracture closure pressure underestimate the magnitude of , presumably due to the rapid closure of the hydraulic fracture after shut-in. The most consistent results were found using the inflection point and bilinear pressure decay rate method, which both determine the (instantaneous) shut-in pressure as the proxy for the magnitude. The determined shut-in pressure, or magnitude, is  MPa from the inflection point method. This allowed us to further estimate the stress environment around the BedrettoLab, which is transitional between normal and strike-slip faulting. The measured local pore pressures from extended shut-in periods are between 2.0 and 5.6 MPa, significantly below hydrostatic. A combination of drainage, cooling, and the excavation damage zone of the tunnel may have significantly perturbed the in situ stress field in the vicinity of the BedrettoLab.
A Numerical Study of Elastic Wave Arrival Behavior in a Naturally Fractured Rock Based on a Combined Displacement Discontinuity-Discrete Fracture Network Model
Wang S, Zhang Z, Huang X and Lei Q
The arrival behavior of elastic waves in a naturally fractured rock is studied based on numerical simulations. We use the discrete fracture network method to represent the distribution of a natural fracture system and employ the displacement discontinuity method to compute the propagation of elastic waves across individual fractures. We analyze macroscopic wavefield arrival properties collectively arising from the interaction between elastic waves and numerous fractures in the system. We show that the dimensionless angular frequency  = / exerts a fundamental control on the arrival behavior of a plane wave traveling through the fractured rock, where , , and are the angular frequency, seismic impedance, and fracture stiffness, respectively. An asynchronous arrival phenomenon of the wave energy occurs and becomes more significant with an increased . Two regimes are identified according to the two-branch dependency of the fractal dimension of the FFAW on , where the wave arrival behavior is within a non-fractal regime for smaller than the critical frequency ≈ 1.0, and enters the fractal regime for  ≥  . The self-affine properties of the FFAW, i.e., the roughness exponent and the correlation length , both linearly decrease as a function of the exponent (with  = 10 ) in the fractal regime. Early breakthrough of wave transport occurs in regions with relatively low fracture density, while late-time arrival happens in regions of high fracture density.
Effects of Creep on Shield Tunnelling Through Squeezing Ground
Leone T, Nordas AN and Anagnostou G
The present work aims to improve the reliability of shield jamming and lining damage risk assessment in squeezing ground by analysing the effects of creep on the evolution of rock pressure over time. The study is based on numerical simulations of typical mechanised tunnelling processes, generally consisting of shield advance phases alternating with shorter or longer standstills for lining installation, maintenance, etc A linear elastic-viscous plastic constitutive model based upon Perzyna's overstress theory is employed, which considers the time-dependency of plastic deformations via a single viscosity parameter. The investigations demonstrate the following: (i) shield loading during advance increases with increasing viscosity under certain conditions, which contradicts the common perception in many existing works that creep is thoroughly favourable for shield jamming; (ii) creep is thoroughly unfavourable for shield loading during long standstills and long-term lining loading, due to the additional viscoplastic ground deformations manifested over time; (iii) the commonly adopted simplifying assumption of continuous excavation with the gross advance rate is adequate only where standstills are very short (e.g., for lining erection during the stop-and-go shield tunnelling process), but otherwise underestimates the shield loading, even in cases of regular inspection and maintenance standstills lasting only a few hours. Two application examples, the Fréjus safety gallery and the Gotthard Base tunnel, demonstrate the need to consider creep and the accuracy of modelling tunnel construction by a semi-discrete approach, where only the very short standstills for lining erection are considered via an average advance rate, but longer standstills are explicitly simulated.
Evaluation of Damage Stress Thresholds and Mechanical Properties of Granite: New Insights from Digital Image Correlation and GB-FDEM
Aboayanah KR, Abdelaziz A, Haile BF, Zhao Q and Grasselli G
We employed a novel combination of digital image correlation (DIC) and grain-based hybrid finite-discrete element method (GB-FDEM) to improve the comprehension of the relationships between microstructural features and the mechanical properties of granitic rocks. DIC and numerical results showed that macrocracks initiated and propagated along grain boundaries among different minerals driven by the high stiffness contrast between the compliant biotite and the stiffer feldspar/quartz grains. Surface deformation analyses revealed that tensile-dominated macrocracks open at monotonically increased rates before the crack damage threshold, and the opening accelerated afterwards with the increased shear component. The onset of the acceleration of the opening rate of macrocracks can be used to infer the crack damage threshold. Both strain and acoustic emission were used to infer damage stress thresholds in the synthetic numerical samples. Numerical results showed that the damage stress thresholds and uniaxial compressive strength decrease with increasing grain size following log-linear relations. Coarse-grained samples tend to fail by axial splitting, while fine-grained samples fail by shear zone formation. Biotite and quartz contents significantly affect mechanical properties, while quartz to feldspar ratio is positively related to the mechanical properties. Our study demonstrates the capacities of DIC and GB-FDEM in inferring damage conditions in granitic rocks and clarifies the microstructural control of the macroscopic mechanical behaviors. Our results also provide a comprehensive understanding of the systematics of strain localization, crack development, and acoustic emission during the rock progressive failure process.
Pre-Failure Strain Localization in Siliclastic Rocks: A Comparative Study of Laboratory and Numerical Approaches
Bianchi P, Selvadurai PA, Dal Zilio L, Salazar Vásquez A, Madonna C, Gerya T and Wiemer S
We combined novel laboratory techniques and numerical modeling to investigate (a)seismic preparatory processes associated with deformation localization during a triaxial failure test on a dry sample of Berea sandstone. Laboratory observations were quantified by measuring strain localization on the sample surface with a distributed strain sensing (DSS) array, utilizing optical fibers, in conjunction with both passive and active acoustic emission (AE) techniques. A physics-based computational model was subsequently employed to understand the underlying physics of these observations and to establish a spatio-temporal correlation between the laboratory and modeling results. These simulations revealed three distinct stages of preparatory processes: (i) highly dissipative fronts propagated towards the middle of the sample correlating with the observed acoustic emission locations; (ii) dissipative regions were individuated in the middle of the sample and could be linked to a discernible decrease of the P-wave velocities; (iii) a system of conjugate bands formed, coalesced into a single band that grew from the center towards the sample surface and was interpreted to be representative for the preparation of a weak plane. Dilatative lobes at the process zones of the weak plane extended outwards and grew to the surface, causing strain localization and an acceleration of the simulated deformation prior to failure. This was also observed during the experiment with the strain rate measurements and spatio-temporally correlated with an increase of the seismicity rate in a similar rock volume. The combined approach of such laboratory and numerical techniques provides an enriched view of (a)seismic preparatory processes preceding the mainshock.