Nanotechnology Reviews

Braided composite stent for peripheral vascular applications
Zheng Q, Dong P, Li Z, Lv Y, An M and Gu L
Braided composite stent (BCS), woven with nitinol wires and polyethylene terephthalate (PET) strips, provides a hybrid design of stent. The mechanical performance of this novel stent has not been fully investigated yet. In this work, the influence of five main design factors (number of nitinol wires, braiding angle, diameter of nitinol wire, thickness and stiffness of the PET strip) on the surface coverage, radial strength, and flexibility of the BCS were systematically studied using computational models. The orthogonal experimental design was adopted to quantitatively analyze the sensitivity of multiple factors using the minimal number of study cases. Results have shown that the nitinol wire diameter and the braiding angle are two most important factors determining the mechanical performance of the BCS. A larger nitinol wire diameter led to a larger radial strength and less flexibility of the BCS. A larger braiding angle could provide a larger radial strength and better flexibility. In addition, the impact of the braiding angle decreased when the stent underwent a large deformation. At the same time, the impact of the PET strips increased due to the interaction with nitinol wires. Moreover, the number of PET strips played an important role in the surface coverage. This study could help understand the mechanical performance of BCS stent and provides guidance on the optimal design of the stent targeting less complications.
Mechanical characterizations of braided composite stents made of helical polyethylene terephthalate strips and NiTi wires
Zheng Q, Dong P, Li Z, Han X, Zhou C, An M and Gu L
The novel braided composite stent (BCS), woven with both nitinol wires and polyethylene terephthalate (PET) strips, were characterized and compared with the braided nitinol stent in the same weaving pattern. Finite element models simulating the stent compression and bending were developed to quantify its radial strength and longitudinal flexibility. The interaction between the nitinol wires and the PET strips were also delineated. Results showed that the PET strips enforced more constrains on the BCS and thus enhance its radial strength especially at a larger compression load. The longitudinal flexibility of the BCS was less sensitive to the presence of the PET strips. This work suggested that the novel design of the BCS could acquire the advantage of a covered stent without compromising its mechanical performance. The fundamental understanding of the braided composite stent will facilitate a better device design.
Effect of carbon nanotube (CNT) functionalization in Epoxy-CNT composites
Roy S, Petrova RS and Mitra S
The effect of carbon nanotube (CNT) functionalization in altering the properties of Epoxy-CNT composites is presented. The presence of functional groups effectively influenced the colloidal behavior of CNTs in the precursor epoxy resin and the hardener triethylenetetramine (TETA), which affected the synthesis process and eventually the interfacial interactions between the polymer matrix and the CNTs. The physical, thermal and electrical properties of the composites exhibited strong dependence on the nature of functionalization. At a 0.5 wt% CNTs loading, the enhancement in tensile strength was found to be 7.2, 11.2, 11.4 and 14.2 percent for raw CNTs, carboxylated CNTs, octadecyl amide functionalized CNTs and hydroxylated CNTs, respectively. Glass transition temperatures (T) also varied with the functionalization and composite prepared using hydroxylated CNTs showed the maximum enhancement of 34%.
Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications
Zangabad PS, Mirkiani S, Shahsavari S, Masoudi B, Masroor M, Hamed H, Jafari Z, Taghipour YD, Hashemi H, Karimi M and Hamblin MR
Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among different types of self-assembled NPs, liposomes stand out for their non-toxic nature, and their possession of dual hydrophilic-hydrophobic domains. Advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. Firstly, ligands for active targeting can be attached that are recognized by cognate receptors over-expressed on the target cells of tissues. Secondly, modification can be used to impart a stimulus-responsive or "smart" character to the liposomes, whereby the cargo is released on demand only when certain internal stimuli (pH, reducing agents, specific enzymes) or external stimuli (light, magnetic field or ultrasound) are present. Here, we review the field of smart liposomes for drug delivery applications.
The biocorona: a challenge for the biomedical application of nanoparticles
Shannahan J
Formation of the biocorona on the surface of nanoparticles is a significant obstacle for the development of safe and effective nanotechnologies, especially for nanoparticles with biomedical applications. Following introduction into a biological environment, nanoparticles are rapidly coated with biomolecules resulting in formation of the nanoparticle-biocorona. The addition of these biomolecules alters the nanoparticle's physicochemical characteristics, functionality, biodistribution, and toxicity. To synthesize effective nanotherapeutics and to more fully understand possible toxicity following human exposures, it is necessary to elucidate these interactions between the nanoparticle and the biological media resulting in biocorona formation. A thorough understanding of the mechanisms by which the addition of the biocorona governs nanoparticle-cell interactions is also required. Through elucidating the formation and the biological impact of the biocorona, the field of nanotechnology can reach its full potential. This understanding of the biocorona will ultimately allow for more effective laboratory screening of nanoparticles and enhanced biomedical applications. The importance of the nanoparticle-biocorona has been appreciated for a decade; however, there remain numerous future directions for research which are necessary for study. This perspectives article will summarize the unique challenges presented by the nanoparticle-biocorona and avenues of future needed investigation.
Noble metal nanoparticles in biosensors: recent studies and applications
Malekzad H, Zangabad PS, Mirshekari H, Karimi M and Hamblin MR
The aim of this review is to cover advances in noble metal nanoparticle (MNP)-based biosensors and to outline the principles and main functions of MNPs in different classes of biosensors according to the transduction methods employed. The important biorecognition elements are enzymes, antibodies, aptamers, DNA sequences, and whole cells. The main readouts are electrochemical (amperometric and voltametric), optical (surface plasmon resonance, colorimetric, chemiluminescence, photoelectrochemical, etc.) and piezoelectric. MNPs have received attention for applications in biosensing due to their fascinating properties. These properties include a large surface area that enhances biorecognizers and receptor immobilization, good ability for reaction catalysis and electron transfer, and good biocompatibility. MNPs can be used alone and in combination with other classes of nanostructures. MNP-based sensors can lead to significant signal amplification, higher sensitivity, and great improvements in the detection and quantification of biomolecules and different ions. Some recent examples of biomolecular sensors using MNPs are given, and the effects of structure, shape, and other physical properties of noble MNPs and nanohybrids in biosensor performance are discussed.
Nanodiscs and Solution NMR: preparation, application and challenges
Puthenveetil R, Nguyen K and Vinogradova O
Nanodiscs provide an excellent system for the structure-function investigation of membrane proteins. Its direct advantage lies in presenting a water soluble form of an otherwise hydrophobic molecule, making it amenable to a plethora of solution techniques. Nuclear Magnetic Resonance is one such high resolution approach that looks at the structure and dynamics of a protein with atomic level precision. Recently, there has been a breakthrough in making nanodiscs more susceptible for structure determination by solution NMR, yet it still remains to become the preferred choice for a membrane mimetic. In this practical review, we provide a general discourse on nanodisc and its application to solution NMR. We also offer potential solutions to remediate the technical challenges associated with nanodisc preparation and the choice of proper experimental set-ups. Along with discussing several structural applications, we demonstrate an alternative use of nanodiscs for functional studies, where we investigated the phosphorylation of a cell surface receptor, Integrin. This is the first successful manifestation of observing activated receptor phosphorylation in nanodiscs through NMR. We additionally present an on-column method for nanodisc preparation with multiple strategies and discuss the potential use of alternative nanoscale phospholipid bilayer systems like SMA lipid discs and Saposin-A lipoprotein discs.
Nanotechnology for photodynamic therapy: a perspective from the Laboratory of Dr. Michael R. Hamblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School
Hamblin MR, Chiang LY, Lakshmanan S, Huang YY, Garcia-Diaz M, Karimi M, de Souza Rastelli AN and Chandran R
The research interests of the Hamblin Laboratory are broadly centered on the use of different kinds of light to treat many different diseases. Photodynamic therapy (PDT) uses the combination of dyes with visible light to produce reactive oxygen species and kill bacteria, cancer cells and destroy unwanted tissue. Likewise, UV light is also good at killing especially pathogens. By contrast, red or near-infrared light can have the opposite effect, to act to preserve tissue from dying and can stimulate healing and regeneration. In all these applications, nanotechnology is having an ever-growing impact. In PDT, self-assembled nano-drug carriers (micelles, liposomes, etc.) play a great role in solubilizing the photosensitizers, metal nanoparticles can carry out plasmon resonance enhancement, and fullerenes can act as photosensitizers, themselves. In the realm of healing, single-walled carbon nanotubes can be electrofocused to produce nano-electonic biomedical devices, and nanomaterials will play a great role in restorative dentistry.
Nanotechnology for cancer treatment
Gmeiner WH and Ghosh S
Nanotechnology has the potential to increase the selectivity and potency of chemical, physical, and biological approaches for eliciting cancer cell death while minimizing collateral toxicity to nonmalignant cells. Materials on the nanoscale are increasingly being targeted to cancer cells with great specificity through both active and passive targeting. In this review, we summarize recent literature that has broken new ground in the use of nanotechnology for cancer treatment with an emphasis on targeted drug delivery.
Can nanotechnology potentiate photodynamic therapy?
Huang YY, Sharma SK, Dai T, Chung H, Yaroslavsky A, Garcia-Diaz M, Chang J, Chiang LY and Hamblin MR
Photodynamic therapy (PDT) uses the combination of non-toxic dyes and harmless visible light to produce reactive oxygen species that can kill cancer cells and infectious microorganisms. Due to the tendency of most photosensitizers (PS) to be poorly soluble and to form nonphotoactive aggregates, drug-delivery vehicles have become of high importance. The nanotechnology revolution has provided many examples of nanoscale drug-delivery platforms that have been applied to PDT. These include liposomes, lipoplexes, nanoemulsions, micelles, polymer nanoparticles (degradable and nondegradable), and silica nanoparticles. In some cases (fullerenes and quantum dots), the actual nanoparticle itself is the PS. Targeting ligands such as antibodies and peptides can be used to increase specificity. Gold and silver nanoparticles can provide plasmonic enhancement of PDT. Two-photon excitation or optical upconversion can be used instead of one-photon excitation to increase tissue penetration at longer wavelengths. Finally, after sections on studies and nanotoxicology, we attempt to answer the title question, "can nano-technology potentiate PDT?"
Therapeutic strategies and potential implications of silver nanoparticles in the management of skin cancer
Dasari S, Yedjou CG, Brodell RT, Cruse AR and Tchounwou PB
Skin cancer (SC) is the most common carcinoma affecting 3 million people annually in the United States and millions of people worldwide. It is classified as melanoma SC (MSC) and non-melanoma SC (NMSC). NMSC represents approximately 80% of SC and includes squamous cell carcinoma and basal cell carcinoma. MSC, however, has a higher mortality rate than SC because of its ability to metastasize. SC is a major health problem in the United States with significant morbidity and mortality in the Caucasian population. Treatment options for SC include cryotherapy, excisional surgery, Mohs surgery, curettage and electrodessication, radiation therapy, photodynamic therapy, immunotherapy, and chemotherapy. Treatment is chosen based on the type of SC and the potential for side effects. Novel targeted therapies are being used with increased frequency for large tumors and for metastatic disease. A scoping literature search on PubMed, Google Scholar, and Cancer Registry websites revealed that traditional chemotherapeutic drugs have little effect against SC after the cancer has metastasized. Following an overview of SC biology, epidemiology, and treatment options, this review focuses on the mechanisms of advanced technologies that use silver nanoparticles in SC treatment regimens.
Degradation modeling of poly-l-lactide acid (PLLA) bioresorbable vascular scaffold within a coronary artery
Lin S, Dong P, Zhou C, Dallan LAP, Zimin VN, Pereira GTR, Lee J, Gharaibeh Y, Wilson DL, Bezerra HG and Gu L
In this work, a strain-based degradation model was implemented and validated to better understand the dynamic interactions between the bioresorbable vascular scaffold (BVS) and the artery during the degradation process. Integrating the strain-modulated degradation equation into commercial finite element codes allows a better control and visualization of local mechanical parameters. Both strut thinning and discontinuity of the stent struts within an artery were captured and visualized. The predicted results in terms of mass loss and fracture locations were validated by the documented experimental observations. In addition, results suggested that the heterogeneous degradation of the stent depends on its strain distribution following deployment. Degradation is faster at the locations with higher strains and resulted in the strut thinning and discontinuity, which contributes to the continuous mass loss, and the reduced contact force between the BVS and artery. A nonlinear relationship between the maximum principal strain of the stent and the fracture time was obtained, which could be transformed to predict the degradation process of the BVS in different mechanical environments. The developed computational model provided more insights into the degradation process, which could complement the discrete experimental data for improving the design and clinical management of the BVS.