Increased dopamine D/D receptor and serotonin transporter availability in male rats after spontaneous remission from repeated social defeat-induced depression; a PET study in rats
Most pharmacological treatments for depression target monoamine transporters and about 50 % of treated patients attain symptomatic remission. Once remission is attained, it is hard to distinguish the changes on brain monoaminergic transmission induced by the antidepressants, from those associated to remission per se. In this study, we aimed at studying the brain of spontaneously remitted rats from repeated social defeat (RSD)-induced depression in terms of dopamine D/D receptor and serotonin transporter (SERT) availability, showing absence of depressive symptoms 2 weeks after RSD. We combined behavioral tests and positron emission tomography (PET) with [C]raclopride and [C]DASB to explore the changes in dopamine D/D receptor and serotonin transporter (SERT) availability, respectively. Male rats submitted to RSD showed increased peripheral corticosterone levels, decreased body weight and anhedonia, as measured with the sucrose preference test, 1 day after RSD, confirming depressive-like symptoms. These depressive-like symptoms were no longer present 2 weeks after RSD. Rats that recovered from depressive-like symptoms showed decreased D/D receptor binding in the caudate putamen and increased SERT availability in the brainstem, insular cortex, midbrain and thalamus, compared to control non-stressed animals. Our study shows that remission of depressive-like symptoms does not just "normalize" monoaminergic transmission, as changes in dopaminergic and serotonergic neurotransmission linger in several brain regions even after depressive-like symptoms have already resolved. These results provide new insights into the brain changes associated to remission in the RSD-induced depression model in rats.
Neuronal ACE1 knockout disrupts the hippocampal renin angiotensin system leading to memory impairment and vascular loss in normal aging
Angiotensin I converting enzyme (ACE1) maintains blood pressure homeostasis by converting angiotensin I into angiotensin II in the renin-angiotensin system (RAS). ACE1 is expressed in the brain, where an intrinsic RAS regulates complex cognitive functions including learning and memory. ACE1 has been implicated in neurodegenerative disorders including Alzheimer's disease and Parkinson's disease, but the mechanisms remain incompletely understood. Here, we performed single-nucleus RNA sequencing to characterize the expression of RAS genes in the hippocampus and discovered that Ace is mostly expressed in CA1 region excitatory neurons. To gain a deeper understanding of the function of neuronal ACE1, we generated ACE1 conditional knockout (cKO) mice lacking ACE1 expression specifically in hippocampal and cortical excitatory neurons. ACE1 cKO mice exhibited hippocampus-dependent memory impairment in the Morris water maze, y-maze, and fear conditioning tests. Total ACE1 level was significantly reduced in the cortex and hippocampus of ACE1 cKO mice showing that excitatory neurons are the predominant cell type expressing ACE1 in the forebrain. Despite similar reductions in total ACE1 level in both the hippocampus and cortex, the RAS pathway was dysregulated in the hippocampus only. Importantly, ACE1 cKO mice exhibited age-related capillary loss selectively in the hippocampus. Here, we show selective vulnerability of the hippocampal microvasculature and RAS pathway to neuronal ACE1 knockout. Our results provide important insights into the function of ACE1 in the brain and demonstrate a connection between neuronal ACE1 and cerebrovascular function in the hippocampus.
Linking human cerebral and ocular waste clearance: Insights from tear fluid and ultra-high field MRI
Impaired cerebral waste clearance (i.e., glymphatics) is evident in aging and neurodegenerative disorders, such as Alzheimer's disease, where an impaired waste clearance system could be related to the accumulation of pathological proteins (e.g., tau). One marker of impaired cerebral clearance is the abundance of enlarged perivascular spaces (PVS). Preclinical studies propose a similar clearance system in the eye, driven by intraocular pressure (IOP). This cross-sectional pilot study explores the link between ocular and cerebral waste clearance by examining the association between MRI-visible PVS, tear fluid total-tau, and IOP. Thirty cognitively healthy participants, all aged over 55 years, underwent 7 Tesla MRI, with PVS visually rated in the centrum semiovale (CSO) and basal ganglia. Tear fluid was collected using paper Schirmer's strips and analyzed for total-tau using enzyme-linked immunosorbent assay. IOP was measured using non-contact tonometry. Partial Spearman's correlation coefficients of eye and brain markers were calculated, adjusted for age, sex, tear fluid-wetting length, and hemispheric region of interest volume. Higher CSO PVS scores in the left and right hemisphere were associated with higher levels of tear fluid total-tau. Higher CSO PVS scores in both hemispheres were related to lower ipsilateral IOP. The exploratory results suggest that higher tear fluid total-tau and a reduced driving force of ocular waste clearance are connected to impaired cerebral waste clearance in cognitive healthy individuals. This study connects the potential ocular glymphatic system to the cerebral waste clearance system. Clarifying waste clearance biology and validating eye biomarkers for cerebral waste clearance could provide treatment targets and diagnostic opportunities for neurological diseases.
Diaphragm relaxation causes seizure-related apnoeas in chronic and acute seizure models in rats
Ictal central apnoea is a feature of focal temporal seizures. It is implicated as a risk factor for sudden unexpected death in epilepsy (SUDEP). Here we study seizure-related apnoeas in two different models of experimental seizures, one chronic and one acute, in adult genetically-unmodified rats, to determine mechanisms of seizure-related apnoeas. Under general anaesthesia rats receive sensors for nasal temperature, hippocampal and/or neocortical potentials, and ECG or EMG for subsequent tethered video-telemetry. Tetanus neurotoxin (TeNT), injected into hippocampus during surgery, induces a chronic epileptic focus. Other implanted rats receive intraperitoneal pentylenetetrazol (PTZ) to evoke acute seizures. In chronically epileptic rats, convulsive seizures cause apnoeas (9.9 ± 5.3 s; 331 of 730 convulsive seizures in 15 rats), associated with bradyarrhythmias. Absence of EEG and ECG biomarkers exclude obstructive apnoeas. All eight TeNT-rats with diaphragm EMG have apnoeas with no evidence of obstruction, and have apnoea EMGs significantly closer to expiratory relaxation than inspiratory contraction during pre-apnoeic respiration, which we term "atonic diaphragm". Consistent with atonic diaphragm is that the pre-apnoeic nasal airflow is expiration, as it is in human ictal central apnoea. Two cases of rat sudden death occur. One, with telemetry to the end, reveals a lethal apnoea, the other only has video during the final days, which reveals cessation of breathing shortly after the last clonic epileptic movement. Telemetry following acute systemic PTZ reveals repeated seizures and seizure-related apnoeas, culminating in lethal apnoeas; ictal apnoeas are central - in 8 of 35 cases diaphragms initially contract tonically for 8.5 ± 15.0 s before relaxing, in the 27 remaining cases diaphragms are atonic throughout apnoeas. All terminal apnoeas are atonic. Differences in types of apnoea due to systemic PTZ in rats (mainly atonic) and mice (tonic) are likely species-specific. Certain genetic mouse models have apnoeas caused by tonic contraction, potentially due to expression of epileptogenic mutations throughout the brain, including in respiratory centres, in contrast with acquired focal epilepsies. We conclude that ictal apnoeas in the rat TeNT model result from atonic diaphragms. Relaxed diaphragms could be particularly helpful for therapeutic stimulation of the diaphragm to help restore respiration.
Synergistic effect of Wharton's jelly-derived mesenchymal stem cells and insulin on Schwann cell proliferation in Charcot-Marie-Tooth disease type 1A treatment
Charcot-Marie-Tooth disease type 1A (CMT1A) is a demyelinating disease caused by PMP22 duplication and an exceedingly rare hereditary peripheral neuropathy, with an incidence of 1 in 2500. Currently, no cure exists for CMT1A; however, various therapeutic approaches are under development. Considering the known therapeutic effects of mesenchymal stem cells (MSCs) and the relation of blood sugar levels with nerve damage in CMT, this study aimed to confirm the therapeutic effects of MSCs and insulin on CMT, using both in-vitro and in-vivo models. CMT1A in-vitro models were exposed to Wharton's jelly-derived MSCs (WJ-MSCs) or insulin, and the resulting proliferation changes were measured. CMT1A mice were treated with WJ-MSCs or insulin, and their phenotypic changes were observed. We observed improvements in myelination of Schwann cells in vitro and motor function in vivo. Insulin also showed therapeutic efficacy by promoting Schwann cell proliferation. Furthermore, combination therapy using insulin and WJ-MSCs was more effective than WJ-MSCs or insulin alone. Insulin promoted the proliferation of Schwann cells and WJ-MSCs through activation of the ATK and PI3K-MAPK signaling pathways. Overall, this study is the first to confirm the therapeutic efficacy of WJ-MSCs and insulin in CMT1A, and their synergistic effect without causing insulin resistance.
Deciphering the alteration of MAP2 interactome caused by a schizophrenia-associated phosphorylation
Microtubule-associated protein 2 (MAP2) is a crucial regulator of dendritic structure and neuronal function, orchestrating diverse protein interactions within the microtubule network. We have shown MAP2 is hyperphosphorylated at serine 1782 (S1782) in schizophrenia and phosphomimetic mutation of S1782 in mice (MAP2) is sufficient to impair dendritic architecture. We sought to determine how this hyperphosphorylation affects the MAP2 interactome to provide insights into the disorder's mechanisms. We investigated the MAP2 interactome using co-immunoprecipitation and mass spectrometry in MAP2 and MAP2 mice. We found that S1782E MAP2 led to a substantial disruption of protein-protein interactions relative to WT MAP2. Reduced interactions with PDZ domain-containing proteins, calmodulin-binding proteins, ribosome proteins, and kinesin proteins may all contribute to dendritic impairments induced by S1782E, and may be linked to schizophrenia pathogenesis. Interestingly, novel gain-of-function interactions with PPM1L and KLHL8 nominated these as regulators of phosphoS1782 MAP2 abundance and potential therapeutic targets in schizophrenia.
The broad spectrum of malignant syndromes
Malignant syndromes represent a group of medical conditions characterized by a rapid evolution of clinical manifestations, potentially leading to life-threatening complications if left untreated. These syndromes pose significant challenges for diagnosis and management, as they can lead to multisystem organ failure and death. Despite distinct features and origins, these syndromes share similar clinical presentation, pathophysiology, and the imperative for urgent medical intervention. While distinct mechanisms may initially trigger the different malignant syndromes, a final common pathway leading to similar signs and symptoms involves various neurotransmitter systems, including dopaminergic, serotonergic, GABAergic, glycinergic, and glutamatergic pathways. This narrative review examines the clinical presentations and potential causes of malignant syndromes, both highlighting shared pathophysiological mechanisms and emphasizing the critical importance of early recognition and intervention to mitigate potentially fatal outcomes. Although clinically heterogeneous, with variable motor and non-motor manifestations, most malignant syndromes share acute and rapid disruptions in physiological functions, including body temperature regulation, metabolism, control of the autonomic system and maintenance of consciousness. The potential for severe morbidity and mortality associated with these syndromes emphasizes the critical need for understanding their clinical characteristics, underlying mechanisms, and appropriate management strategies.
Wireless optogenetic stimulation on the prelimbic to the nucleus accumbens core circuit attenuates cocaine-induced behavioral sensitization
Behavioral sensitization is defined as the heightened and persistent behavioral response to repeated drug exposure as a manifestation of drug craving. Psychomotor stimulants such as cocaine can induce strong behavioral sensitization. In this study, we explored the effects of optogenetic stimulation of the prelimbic (PL) to the nucleus accumbnes (NAc) core on the expression of cocaine-induced behavioral sensitization. Using wireless optogenetics, we selectively stimulated the PL-NAc core circuit, and assessed the effects of this treatment on cocaine-induced locomotor activity and accompanying changes in neuronal activation and dendritic spine density. Our findings revealed that optogenetic stimulation of the PL-NAc core circuit effectively suppressed the cocaine-induced locomotor sensitization, accompanied by a reduction in c-Fos expression within the NAc core. Moreover, optogenetic stimulation led to reduction in dendritic spine density, particularly thin and mushroom spine densities, in the NAc core. This study demonstrates that cocaine-induced locomotor sensitization can be regulated by optogenetic stimulation of the PL-NAc core circuit, providing insights into the crucial role of this circuit in psychomotor stimulant addiction.
Developmental and physiological impacts of pathogenic human huntingtin protein in the nervous system
Huntington's Disease (HD) is a neurodegenerative disorder, part of the nine identified inherited polyglutamine (polyQ) diseases. Most commonly, HD pathophysiology manifests in middle-aged adults with symptoms including progressive loss of motor control, cognitive decline, and psychiatric disturbances. Associated with the pathophysiology of HD is the formation of insoluble fragments of the huntingtin protein (htt) that tend to aggregate in the nucleus and cytoplasm of neurons. To track both the intracellular progression of the aggregation phenotype as well as the physiological deficits associated with mutant htt, two constructs of human HTT were expressed in the Drosophila melanogaster nervous system with varying polyQ lengths, non-pathogenic-htt (NP-htt) and pathogenic-htt (P-htt), with an N-terminal RFP tag for in vivo visualization. P-htt aggregates accumulate in the ventral nerve cord cell bodies as early as 24 h post hatching and significant aggregates form in the segmental nerve branches at 48 h post hatching. Organelle trafficking up- and downstream of aggregates formed in motor neurons showed severe deficits in trafficking dynamics. To explore putative downstream deficits of htt aggregation, ultrastructural changes of presynaptic motor neurons and muscles were assessed, but no significant effects were observed. However, the force and kinetics of muscle contractions were severely affected in P-htt animals, reminiscent of human chorea. Reduced muscle force production translated to altered locomotory behavior. A novel HD aggregation model was established to track htt aggregation throughout adulthood in the wing, showing similar aggregation patterns with larvae. Expressing P-htt in the adult nervous system resulted in significantly reduced lifespan, which could be partially rescued by feeding flies the mTOR inhibitor rapamycin. These findings advance our understanding of htt aggregate progression as well the downstream physiological impacts on the nervous system and peripheral tissues.
Activation of hypoactive parvalbumin-positive fast-spiking interneurons restores dentate inhibition to reduce electrographic seizures in the mouse intrahippocampal kainate model of temporal lobe epilepsy
Parvalbumin-positive (PV+) GABAergic interneurons in the dentate gyrus provide powerful perisomatic inhibition of dentate granule cells (DGCs) to prevent overexcitation and maintain the stability of dentate gyrus circuits. Most dentate PV+ interneurons survive status epilepticus, but surviving PV+ interneuron mediated inhibition is compromised in the dentate gyrus shortly after status epilepticus, contributing to epileptogenesis in temporal lobe epilepsy. It is uncertain whether the impaired activity of dentate PV+ interneurons recovers at later times or if it continues for months following status epilepticus. The development of compensatory modifications related to PV+ interneuron circuits in the months following status epilepticus is unknown, although reduced dentate GABAergic inhibition persists long after status epilepticus. We employed whole-cell patch-clamp recordings from dentate PV+ interneurons and DGCs in slices from male and female sham controls and intrahippocampal kainate (IHK) treated mice that developed spontaneous seizures months after status epilepticus to study epilepsy-associated changes in dentate PV+ interneuron circuits. Electrical recordings showed that: 1) Action potential firing rates of dentate PV+ interneurons were reduced in IHK treated mice up to four months after status epilepticus; 2) spontaneous inhibitory postsynaptic currents (sIPSCs) in DGCs exhibited reduced frequency but increased amplitude in IHK treated mice; and 3) the amplitude of IPSCs in DGCs evoked by optogenetic activation of dentate PV+ cells was upregulated without changes in short-term plasticity. Video-EEG recordings revealed that IHK treated mice showed spontaneous electrographic seizures in the dentate gyrus and that chemogenetic activation of PV+ interneurons abolished electrographic seizures. Our results suggest not only that the compensatory changes in PV+ interneuron circuits develop after IHK treatment, but also that increased PV+ interneuron mediated inhibition in the dentate gyrus may compensate for cell loss and reduced intrinsic excitability of dentate PV+ interneurons to stop seizures in temporal lobe epilepsy.
PTEN deletion in the adult dentate gyrus induces epilepsy
Embryonic and early postnatal promotor-driven deletion of the phosphatase and tensin homolog (PTEN) gene results in neuronal hypertrophy, hyperexcitable circuitry and development of spontaneous seizures in adulthood. We previously documented that focal, vector-mediated PTEN deletion in mature granule cells of adult dentate gyrus triggers dramatic growth of cell bodies, dendrites, and axons, similar to that seen with early postnatal PTEN deletion. Here, we assess the functional consequences of focal, adult PTEN deletion, focusing on its pro-epileptogenic potential. PTEN deletion was accomplished by injecting AAV-Cre either bilaterally or unilaterally into the dentate gyrus of double transgenic PTEN-floxed, ROSA-reporter mice. Hippocampal recording electrodes were implanted for continuous digital EEG with concurrent video recordings in the home cage. Electrographic seizures and epileptiform spikes were assessed manually by two investigators, and corelated with concurrent videos. Spontaneous electrographic and behavioral seizures appeared after focal PTEN deletion in adult dentate granule cells, commencing around 2 months post-AAV-Cre injection. Seizures occurred in the majority of mice with unilateral or bilateral PTEN deletion and led to death in several cases. PTEN-deletion provoked epilepsy was not associated with apparent hippocampal neuron death; supra-granular mossy fiber sprouting was observed in a few mice. In summary, focal, unilateral deletion of PTEN in the adult dentate gyrus suffices to provoke time-dependent emergence of a hyperexcitable circuit generating hippocampus-origin, generalizing spontaneous seizures, providing a novel model for studies of adult-onset epileptogenesis.
Early dysregulation of GSK3β impairs mitochondrial activity in Fragile X Syndrome
The finely tuned regulation of mitochondria activity is essential for proper brain development. Fragile X Syndrome (FXS), the leading cause of inherited intellectual disability, is a neurodevelopmental disorder in which mitochondrial dysfunction has been increasingly implicated. This study investigates the role of Glycogen Synthase Kinase 3β (GSK3β) in FXS. Several studies have reported GSK3β deregulation in FXS, and its role in mitochondrial function is known. However, the link between disrupted GSK3β activity and mitochondrial dysfunction in FXS remains unexplored. Utilizing Fmr1 knockout (KO) mice and human cell lines from FXS individuals, we uncovered a developmental window where dysregulated GSK3β activity disrupts mitochondrial function. Notably, a partial inhibition of GSK3β activity in FXS fibroblasts from young individuals rescues the observed mitochondrial defects, suggesting that targeting GSK3β in the early stages may offer therapeutic benefits for this condition.
LRRK2 and RAB8A regulate cell death after lysosomal damage in macrophages through cholesterol-related pathways
Activating mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are among the most common genetic causes of Parkinson's disease (PD). The mechanistic path from LRRK2 mutations to PD is not established, but several lines of data suggest that LRRK2 modulation of lysosomal function is involved. It has previously been shown that LRRK2 is recruited to lysosomes upon lysosomal damage leading to increased phosphorylation of its RAB GTPase substrates in macrophage-derived RAW 264.7 cells. Here, we find that LRRK2 kinase inhibition reduces cell death induced by the lysosomotropic compound LLOMe in RAW 264.7 cells showing that lysosomal damage and LRRK2 functionally interacts in both directions: lysosomal damage can lead to activation of LRRK2 signaling and LRRK2 inhibition can attenuate LLOMe-induced cell death. The effect is lysosome specific, as only lysosomal stressors and not a variety of other cell death inducers could be modulated by LRRK2 kinase inhibition. We show with timing and Lysotracker experiments that LRRK2 inhibition does not affect the immediate lysosomal permeabilization induced by LLOMe, but rather modulates the subsequent cellular response to lysosomal damage. siRNA-mediated knockdown of LRRK2 and its main substrates, the RAB GTPases, showed that LRRK2 and RAB8A knockdown could attenuate LLOMe-induced cell death, but not other RAB GTPases tested. An RNA sequencing study was done to identify downstream pathways modulated by LLOMe and LRRK2 inhibition. The most striking finding was that almost all cholesterol biosynthesis genes were strongly downregulated by LLOMe and upregulated with LRRK2 inhibition in combination with LLOMe treatment. To explore the functional relevance of the transcriptional changes, we pretreated cells with the NPC1 inhibitor U18666A that can lead to accumulation of lysosomal cholesterol. U18666A-treated cells were less sensitive to LLOMe-induced cell death, but the attenuation of cell death by LRRK2 inhibition was strongly reduced suggesting that LRRK2 inhibition and lysosomal cholesterol reduces cell death by overlapping mechanisms. Thus, our data demonstrates a LRRK2- and RAB8A-mediated attenuation of RAW 264.7 cell death induced by lysosomal damage that is modulated by lysosomal cholesterol.
Specific analysis of SOD1 enzymatic activity in CSF from ALS patients with and without SOD1 mutations
Mutations in superoxide dismutase-1 (SOD1) are a cause of hereditary amyotrophic lateral sclerosis (ALS) through a gain-of-function mechanism involving unfolded mutant SOD1. Intrathecal gene therapy using the antisense-oligo-nucleotide drug tofersen to reduce SOD1 expression delays disease progression and has recently been approved in the United States and the European Union. However, the discovery of children homozygous for inactivating SOD1 mutations developing the SOD1 Deficiency Syndrome (ISODDES) with injury to the motor system suggests that a too low SOD1 antioxidant activity may be deleterious in humans. Measuring SOD1 activity in cerebrospinal fluid (CSF) in tofersen-treated patients is recommended but difficult due to low concentration and the presence of the isoenzyme SOD3. We here present a sensitive method to assess SOD1 activity by removing SOD3 from CSF samples using highly specific immobilized antibodies and subsequent measurement of the SOD activity. We validated the method on 171 CSF samples from ALS patients with and without mutations and controls and used paired erythrocyte samples for comparison. We found that in ALS patients with wildtype SOD1, the SOD1 activity in CSF was equal to controls, but patients with mutant SOD1 show lower activity in CSF, even for patients with mutants previously reported to have full activity in erythrocytes. Activity variation in CSF was large among patients carrying the same SOD1 mutation and larger than in erythrocytes and in post-mortem nervous tissue. Additionally, we identified a discrepancy between the SOD1 activity and protein level measured with ELISA in both CSF and erythrocytes. Since antibodies used for SOD1 ELISA-quantification are raised against the natively folded wildtype SOD1, the concentration of mutant SOD1s may be underestimated. Analysis of SOD1 enzymatic activity in CSF is therefore a more reliable way to monitor the effect of SOD1-lowering drugs.
Cognitive impairment and amygdala subregion volumes in elderly with cerebral small vessel disease: A large prospective cohort study
Although the amygdala is associated with cognitive impairment resulting from cerebral small vessel disease, the relationship between alterations in amygdala structure and cerebral small vessel disease (CSVD) remains controversial. Given that the amygdala comprises several subregions, detecting subtle regional changes through total amygdala volume measurement is challenging. This study aimed to identify the patterns of amygdala subregion atrophy in cerebral small vessel disease patients and their relationship with cognitive impairment. A total of 114 participants diagnosed with cerebral small vessel disease and 129 healthy participants, aged 40 to 70, underwent 3 T magnetic resonance imaging scans. The amygdala subregions were automatically segmented using FreeSurfer. In the Propensity Score Matching (PSM)-matched cohort, Lasso regression was employed to identify subregions associated with cerebral small vessel disease, and restricted cubic splines (RCS) were used to explore their nonlinear relationship with cognitive abilities. Subsequently, multivariate linear regression models were used to investigate the impact of amygdala subregion volumes on various cognitive abilities. Compared to healthy controls (HC), the volume of the left cortical nucleus was significantly reduced in cerebral small vessel disease patients. The volume of the left cortical nucleus was significantly negatively correlated with cerebral small vessel disease progression, and atrophy in this region was also identified as an independent risk factor for decreased cognitive control and processing ability. Our findings suggest that patients with cerebral small vessel disease exhibit atrophy in specific amygdala subregions compared to healthy controls, which correlates with poorer cognitive control and processing abilities. These insights may advance our understanding of the pathogenesis of cerebral small vessel disease.
Mitochondrial plasticity: An emergent concept in neuronal plasticity and memory
Mitochondria are classically viewed as 'on demand' energy suppliers to neurons in support of their activity. In order to adapt to a wide range of demands, mitochondria need to be highly dynamic and capable of adjusting their metabolic activity, shape, and localization. Although these plastic properties give them a central support role in basal neuronal physiology, recent lines of evidence point toward a role for mitochondria in the regulation of high-order cognitive functions such as memory formation. In this review, we discuss the interplay between mitochondrial function and neural plasticity in sustaining memory formation at the molecular and cellular levels. First, we explore the global significance of mitochondria in memory formation. Then, we will detail the memory-relevant cellular and molecular mechanisms of mitochondrial plasticity. Finally, we focus on those mitochondrial functions, including but not limited to ATP production, that give mitochondria their pivotal role in memory formation. Altogether, this review highlights the central role of mitochondrial structural and functional plasticity in supporting and regulating neuronal plasticity and memory.
The role of adiponectin-AMPK axis in TDP-43 mislocalization and disease severity in ALS
Hypermetabolism is a prominent characteristic of ALS patients. Aberrant activation of AMPK, an energy sensor regulated by adiponectin, is known to cause TDP-43 mislocalization, an early event in ALS pathogenesis. This study aims to evaluate the association between key energy mediators and clinical severity in ALS patients. We found that plasma adiponectin levels were significantly higher in ALS patients with ALSFRS-R scores below 38 compared to controls (p = 0.047). Additionally, adiponectin concentration was inversely correlated with ALSFRS-R scores (p = 0.021). Immunofluorescence staining of PBMCs revealed negative associations between AMPK activation, TDP-43 mislocalization, and ALSFRS-R scores. We then examined the hypothesis that adiponectin may activate the AMPK-TDP-43 axis in motor neurons. Our results demonstrated that adiponectin treatment of NSC34 cells and HiPSC-MNs induced AMPK activation and TDP-43 mislocalization in an adiponectin receptor-dependent manner. Collectively, these findings suggest that elevated plasma adiponectin may enhance AMPK activation, leading to TDP-43 mislocalization in both PBMCs and motor neurons of ALS patients. This highlights the potential involvement of the adiponectin-AMPK-TDP-43 axis in the dysregulated energy balance observed in ALS.
Impaired brain glucose metabolism as a biomarker for evaluation of dodecyl creatine ester in creatine transporter deficiency: Insights from patient brain-derived organoids and in vivo [18F]FDG PET imaging in a mouse model
Creatine transporter deficiency (CTD) is an inborn error of creatine (Cr) metabolism in which Cr is not properly distributed to the brain due to a mutation in the Cr transporter (CrT) SLC6A8 gene. CTD is associated with developmental delays and with neurological disability in children. Dodecyl creatine ester (DCE), as a Cr prodrug, is a promising drug to treat CTD after administration by the nasal route, taking advantage of the nose-to-brain pathway. In this study, the potential adaptive response to energy imbalance in glucose metabolism was investigated in CTD using both SLC6A8-deficient mice (CrT KO) and brain organoids derived from CTD patient cells. Longitudinal brain [F]FDG PET imaging in CrT KO mice compared to wild-type mice demonstrated that CTD was associated with a significant loss and decline in brain glucose metabolism. In CrT KO mice, intranasal supplementation with DCE for a month significantly mitigated the decline in brain glucose metabolism compared to untreated (vehicle) animals. Mechanistic investigations in CrT KO mice and cerebral organoids derived from CTD patient cells suggest that intracellular trafficking of glucose transporter (Glut) may be altered by lack of activation of AMP-activated protein kinase (AMPK). Consistency between observations in the CrT KO mouse model and cerebral organoids derived from CTD patient cells supports the value of this new model for drug discovery and development. In addition, these results suggest that [F]FDG PET imaging may offer a unique and minimally-invasive biomarker to monitor the impact of investigational treatment on CTD pathophysiology, with translational perspectives.
Differential induction of Parieto-motor plasticity in writer's cramp and cervical dystonia
To investigate the plastic effects of parieto-motor (PAR-MOT) cortico-cortical paired associative paired stimulation (cc-PAS) in patients with two forms of focal dystonia, writer's cramp and cervical dystonia, compared to healthy volunteers (HVs).
Research progress on pyroptosis and its effect on the central nervous system
Pyroptosis is an inflammatory and lysis type of programmed cell death. In the canonical pyroptosis signaling pathway, the NLRP3 inflammasome activates inflammatory caspase-1, which then shears cut the executor protein GSDMD. The N domains of GSDMD move to heterogeneous membranes, form pores, and release inflammatory cytokines IL-1β and IL-18, causing cell membrane swelling and rupture. Pyroptosis is mainly regulated by the key proteins in the signaling pathway, including inflammasome, caspase-1, GSDMD, IL-1β, and IL-18, as well as their agonists and inhibitors. Appropriate pyroptosis can improve host defense mechanisms, while excessive pyroptosis would derive pathological effects on central nervous system, leding to neuroinflammatory response, blood-brain barrier damage, and cognitive disfunction.
Formation of templated inclusions in a forebrain α-synuclein mouse model is independent of LRRK2
Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein share enigmatic roles in the pathobiology of Parkinson's disease (PD). LRRK2 mutations are a common genetic cause of PD which, in addition to neurodegeneration, often present with abnormal deposits of α-synuclein in the form of Lewy-related pathology. As Lewy-related pathology is a prominent neuropathologic finding in sporadic PD, the relationship between LRRK2 and α-synuclein has garnered considerable interest. However, whether and how LRRK2 might influence the accumulation of Lewy-related pathology remains poorly understood. Through stereotactic injection of mouse α-synuclein pre-formed fibrils (PFF), we modeled the spread of Lewy-related pathology within forebrain regions where LRRK2 is most highly expressed. The impact of LRRK2 genotype on the formation of α-synuclein inclusions was evaluated at 1-month post-injection. Neither deletion of LRRK2 nor G2019S LRRK2 knockin appreciably altered the burden of α-synuclein pathology at this early timepoint. These observations fail to provide support for a robust pathophysiologic interaction between LRRK2 and α-synuclein in the forebrain in vivo. There was, however, a modest reduction in microglial activation induced by PFF delivery in the hippocampus of LRRK2 knockout mice, suggesting that LRRK2 may contribute to α-synuclein-induced neuroinflammation. Collectively, our data indicate that the pathological accumulation of α-synuclein in the mouse forebrain is largely independent of LRRK2.