Regulatory mechanisms of steroid hormone receptors on gene transcription through chromatin interaction and enhancer reprogramming
Regulation of steroid hormone receptors (SHRs) on transcriptional reprogramming is crucial for breast cancer progression. SHRs, including estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) play key roles in remodeling the transcriptome of breast cancer cells. However, the molecular mechanisms by which SHRs regulate chromatin landscape in enhancer regions and transcription factor interactions remain largely unknown. In this review, we summarized the regulatory effects of 3 types of SHRs (AR, PR, and GR) on gene transcription through chromatin interactions and enhancer reprogramming. Specifically, AR and PR exhibit bi-directional regulatory effects (both inhibitory and promoting) on ER-mediated gene transcription, while GR modulates the transcription of pro-proliferation genes in ER-positive breast cancer cells. In addition, we have presented four enhancer reprogramming mechanisms (transcription factor cooperation, pioneer factor binding, dynamic assisted loading, and tethering) and the multiple enhancer-promoter contact models. Based on these mechanisms and models, this review proposes that the combination of multiple therapy strategies such as agonists/antagonists of SHRs plus endocrine therapy and the adoption of the latest sequencing technologies are expected to improve the efficacy of ER positive breast cancer treatment.
TENT5A mediates the cancer-inhibiting effects of EGR1 by suppressing the protein stability of RPL35 in hepatocellular carcinoma
Terminal nucleotidyltransferase 5A (TENT5A), recently predicted as a non-canonical poly(A) polymerase, is critically involved in several human disorders including retinitis pigmentosa, cancer and obesity. However, the exact biological role of TENT5A in hepatocellular carcinoma (HCC) has not been elucidated.
Cell death in glioblastoma and the central nervous system
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
IRE1α inhibitor reduces cisplatin resistance in ovarian cancer by modulating IRE1α/XBP1 pathway
Ovarian cancer, a leading cause of gynecological cancer deaths globally, poses significant treatment challenges. Cisplatin (CDDP) is the first treatment choice for ovarian cancer and it is initially effective. However, 80% of ovarian cancer patients eventually relapse and develop resistance, resulting in chemotherapy failure. Therefore, finding new treatment combinations to overcome ovarian cancer resistance can provide a new tactic to improve the ovarian cancer patients' survival rate. We first identified activation of the Unfolded Protein Response (UPR) in CDDP-resistant ovarian cancer cells, implicating the IRE1α/XBP1 pathway in promoting resistance. Our findings demonstrate that inhibiting IRE1α signaling can re-sensitizes resistant cells to CDDP in vivo and in vitro, suggesting that IRE1α inhibitor used in conjunction with CDDP presumably could merge as a novel therapeutic strategy. Here, our research highlights the critical role of IRE1α signaling in mediating CDDP resistance, and paves the way for improved treatment options through combinatorial therapy.
Triggering immunogenic death of cancer cells by nanoparticles overcomes immunotherapy resistance
Immunotherapy resistance poses a significant challenge in oncology, necessitating novel strategies to enhance the therapeutic efficacy. Immunogenic cell death (ICD), including necroptosis, pyroptosis and ferroptosis, triggers the release of tumor-associated antigens and numerous bioactive molecules. This release can potentiate a host immune response, thereby overcoming resistance to immunotherapy. Nanoparticles (NPs) with their biocompatible and immunomodulatory properties, are emerging as promising vehicles for the delivery of ICD-inducing agents and immune-stimulatory adjuvants to enhance immune cells tumoral infiltration and augment immunotherapy efficacy. This review explores the mechanisms underlying immunotherapy resistance, and offers an in-depth examination of ICD, including its principles and diverse modalities of cell death that contribute to it. We also provide a thorough overview of how NPs are being utilized to trigger ICD and bolster antitumor immunity. Lastly, we highlight the potential of NPs in combination with immunotherapy to revolutionize cancer treatment.
HNRNPH1 stabilizes FLOT2 mRNA in a non-canonical m6A-dependent manner to promote malignant progression in nasopharyngeal carcinoma
The mechanism underlying the upregulation of FLOT2 in tumors, especially its regulatory mechanism at the RNA level, remains unclear. The purpose of this study is to investigate the regulatory mechanism of FLOT2 upregulation in tumors, particularly at the RNA level, and its role in nasopharyngeal carcinoma (NPC) progression.
ADAR1 enhances tumor proliferation and radioresistance in non-small cell lung cancer by interacting with Rad18
Posttranslational modification significantly contributes to the transcriptional diversity of tumors. Adenosine deaminase acting on RNA 1 (ADAR1) and its mediated adenosine-to-inosine (A-to-I) editing have been reported to influence tumorigenesis across various cancer types. Nevertheless, the relationship between ADAR1 and radioresistence remains to be elucidated.
ALKBH4 functions as a hypoxia-responsive tumor suppressor and inhibits metastasis and tumorigenesis
The human AlkB homolog (ALKBH) dioxygenase superfamily plays a crucial role in gene regulation and is implicated in cancer progression. Under hypoxic conditions, hypoxia-inducible factors (HIFs) dynamically regulate methylation by controlling various dioxygenases, thereby modulating gene expression. However, the role of hypoxia-responsive AlkB dioxygenase remains unclear.
BCAT1 contributes to the development of TKI-resistant CML
Although most of chronic myeloid leukemia (CML) patients can be effectively treated by the tyrosine kinase inhibitors (TKIs), such as Imatinib, TKI-resistance still occurs in approximately 15-17% of cases. Although many studies indicate that branched chain amino acid (BCAA) metabolism may contribute to the TKI resistance in CML, the detailed mechanisms remains largely unknown.
The long non-coding RNA NEAT1 contributes to aberrant STAT3 signaling in pancreatic cancer and is regulated by a metalloprotease-disintegrin ADAM8/miR-181a-5p axis
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and several studies demonstrate that STAT3 has critical roles throughout the course of PDAC pathogenesis.
Integrating bulk and single-cell transcriptomics to elucidate the role and potential mechanisms of autophagy in aging tissue
Autophagy is frequently observed in tissues during the aging process, yet the tissues most strongly correlated with autophagy during aging and the underlying regulatory mechanisms remain inadequately understood. The purpose of this study is to identify the tissues with the highest correlation between autophagy and aging, and to explore the functions and mechanisms of autophagy in the aging tissue microenvironment.
Unveiling therapeutic avenues targeting xCT in head and neck cancer
Head and neck cancer (HNC) remains a major global health burden, prompting the need for innovative therapeutic strategies. This review examines the role of the cystine/glutamate antiporter (xCT) in HNC, specifically focusing on how xCT contributes to cancer progression through mechanisms such as redox imbalance, ferroptosis, and treatment resistance. The central questions addressed include how xCT dysregulation affects tumor biology and the potential for targeting xCT to enhance treatment outcomes. We explore recent developments in xCT-targeted current and emerging therapies, including xCT inhibitors and novel treatment modalities, and their role in addressing therapeutic challenges. This review aims to provide a comprehensive analysis of xCT as a therapeutic target and to outline future directions for research and clinical application.
Inhibition of EREG/ErbB/ERK by Astragaloside IV reversed taxol-resistance of non-small cell lung cancer through attenuation of stemness via TGFβ and Hedgehog signal pathway
Taxol is the first-line chemo-drug for advanced non-small cell lung cancer (NSCLC), but it frequently causes acquired resistance, which leads to the failure of treatment. Therefore, it is critical to screen and characterize the mechanism of the taxol-resistance reversal agent that could re-sensitize the resistant cancer cells to chemo-drug.
Non-glycanated ΔDCN isoform in muscle invasive bladder cancer mediates cancer stemness and gemcitabine resistance
The small leucine-rich proteoglycan decorin (DCN) is recognized for its diverse roles in tissue homeostasis and malignant progression. Nevertheless, the regulatory effects of DCN on bladder cancer stem cells (BCSCs) and the underlying mechanisms in muscle-invasive bladder cancer (MIBC) remain to be elucidated.
Targeting the Notch-Furin axis with 2-hydroxyoleic acid: a key mechanism in glioblastoma therapy
Glioblastomas (GBMs) are highly treatment-resistant and aggressive brain tumors. 2OHOA, which is currently running a phase IIB/III clinical trial for newly diagnosed GBM patients, was developed in the context of melitherapy. This therapy focuses on the regulation of the membrane's structure and organization with the consequent modulation of certain cell signals to revert the pathological state in several disorders. Notch signaling has been associated with tumorigenesis and cell survival, potentially driving the pathogenesis of GBM. The current study aims to determine whether 2OHOA modulates the Notch pathway as part of its antitumoral mechanism.
Tumour cell-released autophagosomes promote lung metastasis by upregulating PD-L1 expression in pulmonary vascular endothelial cells in breast cancer
Establishing an immunosuppressive premetastatic niche (PMN) in distant organs is crucial for breast cancer metastasis. Vascular endothelial cells (VECs) act as barriers to transendothelial cell migration. However, the immune functions of PMNs remain unclear. Tumour cell-released autophagosomes (TRAPs) are critical modulators of antitumour immune responses. Herein, we investigated the mechanism through which TRAPs modulate the immune function of pulmonary VECs in lung PMN in breast cancer.
SUMOylation regulates the aggressiveness of breast cancer-associated fibroblasts
Cancer-associated fibroblasts (CAFs) are the most abundant stromal cellular component in the tumor microenvironment (TME). CAFs contribute to tumorigenesis and have been proposed as targets for anticancer therapies. Similarly, dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to tumorigenesis and drug resistance in various cancers, including breast cancer. We explored the role of SUMOylation in breast CAFs and evaluated its potential as a therapeutic strategy in breast cancer.
Mitochondria in tumor immune surveillance and tumor therapies targeting mitochondria
Mitochondria play a central role in cellular energy production and metabolic regulation, and their function has been identified as a key factor influencing tumor immune responses. This review provides a comprehensive overview of the latest advancements in understanding the role of mitochondria in tumor immune surveillance, covering both innate and adaptive immune responses. Specifically, it outlines how mitochondria influence the function of the tumor immune system, underscoring their crucial role in modulating immune cell behavior to either promote or inhibit tumor development and progression. Additionally, this review highlights emerging drug interventions targeting mitochondria, including novel small molecules with significant potential in cancer therapy. Through an in-depth analysis, it explores how these innovative strategies could improve the efficacy and outlook of tumor treatment.
Retraction Note: The autocrine glycosylated-GREM1 interacts with TGFB1 to suppress TGFβ/BMP/SMAD-mediated EMT partially by inhibiting MYL9 transactivation in urinary carcinoma
USP28 promotes tumor progression and glycolysis by stabilizing PKM2/Hif1-α in cholangiocarcinoma
Ubiquitination is one of the important modification of proteins which can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin specific protease 28 (USP28) belongs to the deubiquitinase family, which plays a cancer-promoting function in many types of cancers such as pancreatic cancer and breast cancer. So far, the molecular function and significance of USP 28 in cholangiocarcinoma remain unclear.
Unraveling Th subsets: insights into their role in immune checkpoint inhibitor therapy
T helper (Th) cell subsets play pivotal roles in regulating immune responses within the tumor microenvironment, influencing both tumor progression and anti-tumor immunity. Among these subsets, Th1 cells promote cytotoxic responses through the production of IFN-γ, while Th2 cells and regulatory T cells (Tregs) exert immunosuppressive effects that support tumor growth. Th9 and Th17 cells have context-dependent roles, contributing to both pro-inflammatory and regulatory processes in tumor immunity. Tumor antigen-specific T cells within the tumor microenvironment often exhibit a dysfunctional phenotype due to increased expression of inhibitory receptors such as CTLA-4 and PD-1, leading to reduced antitumor activity. Monoclonal antibodies that block these inhibitory signals-collectively known as immune checkpoint inhibitors (ICIs)-can reactivate these T cells, enhancing their ability to target and destroy cancer cells. Recent advancements have highlighted the critical role of T helper subsets in modulating responses to ICIs, with their interactions remaining a focus of ongoing research. Both positive and negative effects of ICIs have been reported in relation to Th cell subsets, with some effects depending on the type of tumor microenvironment. This review summarizes the crucial roles of different T helper cell subsets in tumor immunity and their complex relationship with immune checkpoint inhibitor therapy.