Current Opinion in Virology

Blood virome research in myalgic encephalomyelitis/chronic fatigue syndrome: challenges and opportunities
Obraitis D and Li D
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with a complex clinical presentation and an unknown etiology. Various viral infections have been proposed as potential triggers of ME/CFS onset, but no specific pathogen has been identified in all cases of postinfectious ME/CFS. The symptomatology of the postacute sequelae of SARS-CoV-2, or long COVID, mirrors that of ME/CFS, with nearly half of long COVID patients meeting ME/CFS diagnostic criteria. The influx of newly diagnosed patients has reinvigorated interest in ME/CFS pathogenesis research, with an emphasis on viral triggers. This review summarizes the current understanding of ME/CFS research on viral triggers, including blood virome screening studies. To further elucidate the molecular basis of ME/CFS, there is a need to develop innovative bioinformatics tools capable of analyzing complex virome data and integrating multiomics information.
Host-pathogen interactions of emerging zoonotic viruses: bats, humans and filoviruses
Hood G and Carroll M
This paper provides an overview of the phenomena of cross-species transmission of viruses (known as spillover), focusing on the highly pathogenic filovirus family and their natural reservoir: bats. It also describes the host-pathogen relationship of viruses and their reservoirs, in addition to humans, and discusses current theories of persistent infection.
Advancing zoonotic respiratory virus research through the use of organoids
Flagg M and de Wit E
Zoonotic viruses with the ability to replicate in the human respiratory tract pose a threat to public health. Organoids, which are highly representative, multicellular models representing specific organs or tissues, can aid in our understanding of the pathogenesis, pathogenicity, transmissibility, and reservoir circulation dynamics of zoonotic viruses. Organoid studies can facilitate the rapid selection of antiviral therapies identification of potential reservoir species and intermediate hosts, and inform the selection of suitable laboratory animal models. We review the use of human- and animal-derived organoid models from multiple organs to investigate the threat of emerging zoonotic viruses that cause respiratory disease.
Role of mucosal-associated invariant T cells in coronavirus disease 2019 vaccine immunogenicity
Amini A, Klenerman P and Provine NM
Mucosal-associated invariant T (MAIT) cells are an unconventional T cell population that are highly abundant in humans. They possess a semi-invariant T cell receptor (TCR) that recognises microbial metabolites formed during riboflavin biosynthesis, presented on a nonpolymorphic MHC-like molecule MR1. MAIT cells possess an array of effector functions, including type 1, type 17, and tissue repair activity. Deployment of these functions depends on the stimuli they receive through their TCR and/or cytokine receptors. Strong cytokine signalling, such as in response to vaccination, can bypass TCR triggering and provokes a strong proinflammatory response. Although data are still emerging, multiple aspects of MAIT cell biology are associated with modulation of immunity induced by the coronavirus disease 2019 mRNA and adenovirus vector vaccines. In this review, we will address how MAIT cells may play a role in immunogenicity of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how these cells can be harnessed as cellular adjuvants.
A comparative review of adenovirus A12 and C5 oncogenes
Bertzbach LD, Ip WH, von Stromberg K, Dobner T and Grand RJ
Oncogenic viruses contribute to 15% of global human cancers. To achieve that, virus-encoded oncoproteins deregulate cellular transcription, antagonize common cellular pathways, and thus drive cell transformation. Notably, adenoviruses were the first human viruses proven to induce cancers in diverse animal models. Over the past decades, human adenovirus (HAdV)-mediated oncogenic transformation has been pivotal in deciphering underlying molecular mechanisms. Key adenovirus oncoproteins, encoded in early regions 1 (E1) and 4 (E4), co-ordinate these processes. Among the different adenovirus species, the most extensively studied HAdV-C5 displays lower oncogenicity than HAdV-A12. A complete understanding of the different HAdV-A12 and HAdV-C5 oncoproteins in virus-mediated cell transformation, as summarized here, is relevant for adenovirus research and offers broader insights into viral transformation and oncogenesis.
Hepatitis C virus and hepatocellular carcinoma: carcinogenesis in the era of direct-acting antivirals
Fiehn F, Beisel C and Binder M
Chronic hepatitis C virus (HCV) infection is a major cause of hepatic fibrosis and cirrhosis, with a risk for the development of hepatocellular carcinoma (HCC). Although highly effective direct-acting antivirals (DAAs) are available, the incidence, morbidity, and mortality of HCV-associated HCC are still high. This article reviews the current knowledge of the mechanisms of HCV-induced carcinogenesis with a special focus on those processes that continue after virus clearance and outlines implications for patient surveillance after DAA treatment.
Editorial overview: The lung, the gut, and the genital mucosae: microbial targets and therapeutic playgrounds
Sallenave JM and Xing Z
Oncogenic Animal Herpesviruses
Zafar HS, Akbar H, Xu H, Ponnuraj N, Van Etten K and Jarosinski KW
Oncogenic viruses play a pivotal role in oncology due to their unique role in unraveling the complexities of cancer development. Understanding the role viruses play in specific cancers is important to provide basic insights into the transformation process, which will help identify potential cellular targets for treatment. This review discusses the diverse role of animal herpesviruses in initiating and promoting various forms of cancer. We will summarize the mechanisms that underlie the development of animal herpesvirus-induced cancer that may provide a basis for developing potential therapeutic interventions or preventative strategies in the future.
Modeling zoonotic and vector-borne viruses
Judson SD and Dowdy DW
The 2013-2016 Ebola virus disease epidemic and the coronavirus disease 2019 pandemic galvanized tremendous growth in models for emerging zoonotic and vector-borne viruses. Therefore, we have reviewed the main goals and methods of models to guide scientists and decision-makers. The elements of models for emerging viruses vary across spectrums: from understanding the past to forecasting the future, using data across space and time, and using statistical versus mechanistic methods. Hybrid/ensemble models and artificial intelligence offer new opportunities for modeling. Despite this progress, challenges remain in translating models into actionable decisions, particularly in areas at highest risk for viral disease outbreaks. To address this issue, we must identify gaps in models for specific viruses, strengthen validation, and involve policymakers in model development.
Koala retrovirus and neoplasia: correlation and underlying mechanisms
Tarlinton R and Greenwood AD
The koala retrovirus, KoRV, is one of the few models for understanding the health consequences of retroviral colonization of the germline. Such colonization events transition exogenous infectious retroviruses to Mendelian traits or endogenous retroviruses (ERVs). KoRV is currently in a transitional state from exogenous retrovirus to ERV, which in koalas (Phascolarctos cinereus) has been associated with strongly elevated levels of neoplasia. In this review, we describe what is currently known about the associations and underlying mechanisms of KoRV-induced neoplasia.
A complex immune communication between eicosanoids and pulmonary macrophages
Pernet E, Poschmann J and Divangahi M
Respiratory viral infections represent a constant threat for human health and urge for a better understanding of the pulmonary immune response to prevent disease severity. Macrophages are at the center of pulmonary immunity, where they play a pivotal role in orchestrating beneficial and/or pathological outcomes during infection. Eicosanoids, the host bioactive lipid mediators, have re-emerged as important regulators of pulmonary immunity during respiratory viral infections. In this review, we summarize the current knowledge linking eicosanoids' and pulmonary macrophages' homeostatic and antimicrobial functions and discuss eicosanoids as emerging targets for immunotherapy in viral infection.
Journey of monocytes and macrophages upon influenza A virus infection
Ruscitti C, Radermecker C and Marichal T
Influenza A virus (IAV) infections pose a global health challenge that necessitates a comprehensive understanding of the host immune response to devise effective therapeutic interventions. As monocytes and macrophages play crucial roles in host defence, inflammation, and repair, this review explores the intricate journey of these cells during and after IAV infection. First, we highlight the dynamics and functions of lung-resident macrophage populations post-IAV. Second, we review the current knowledge of recruited monocytes and monocyte-derived cells, emphasising their roles in viral clearance, inflammation, immunomodulation, and tissue repair. Third, we shed light on the consequences of IAV-induced macrophage alterations on long-term lung immunity. We conclude by underscoring current knowledge gaps and exciting prospects for future research in unravelling the complexities of macrophage responses to respiratory viral infections.
Inhaled aerosol viral-vectored vaccines against tuberculosis
Stylianou E and Satti I
Bacille Calmette-Guérin (BCG) remains the sole licensed vaccine against tuberculosis (TB), despite its variable efficacy in protecting against pulmonary TB. The development of effective TB vaccines faces significant challenges, marked by the absence of validated correlates of protection and predictive animal models. Strategic approaches to enhance TB vaccines and augment BCG efficacy include utilising prime-boost strategies with viral-vectored vaccines and exploring innovative delivery techniques, such as mucosal vaccine administration. Viral vectors offer numerous advantages, including the capacity to accommodate genes encoding extensive antigenic fragments and the induction of robust immune responses. Aerosol delivery aligns with the route of Mycobacterium tuberculosis infection and holds the potential to enhance protective mucosal immunity. Aerosolised viral-vectored vaccines overcome anti-vector immunity, facilitating repeated aerosol deliveries.
Early signaling pathways in virus-infected cells
Bonhomme D and Poirier EZ
Virus infection activates specific pattern recognition receptors and immune signal transduction, resulting in pro-inflammatory cytokine production and activation of innate immunity. We describe here the molecular organization of early signaling pathways downstream of viral recognition, including conformational changes, post-translational modifications, formation of oligomers, and generation of small-molecule second messengers. Such molecular organization allows tight regulation of immune signal transduction, characterized by swift but transient responses, nonlinearity, and signal amplification. Pathologies of early immune signaling caused by genomic mutations illustrate the fine regulation of the immune transduction cascade.
Mechanisms of mucosal immunity at the female reproductive tract involved in defense against HIV infection
Choi MW, Isidoro CA and Gillgrass A
Human immunodeficiency virus-1 remains a major global health threat. Since the virus is often transmitted through sexual intercourse and women account for the majority of new infections within the most endemic regions, research on mucosal immunity at the female reproductive tract (FRT) is of paramount importance. At the FRT, there are intrinsic barriers to HIV-1 infection, such as epithelial cells and the microbiome, and immune cells of both the innate and adaptive arms are prepared to respond in case the virus overcomes the first line of defense. In this review, we discuss recent findings on FRT mucosal mechanisms of HIV-1 defense and highlight research gaps. While defense from HIV-1 infection at the FRT has been understudied, current and future research is essential to develop new therapeutics and vaccines that can protect this unique mucosal site from HIV-1.
Role of the intestinal microbiota in host defense against respiratory viral infections
Boncheva I, Poudrier J and Falcone EL
Viral infections, including those affecting the respiratory tract, can alter the composition of the intestinal microbiota, which, in turn, can significantly influence both innate and adaptive immune responses, resulting in either enhanced pathogen clearance or exacerbation of the infection, possibly leading to inflammatory complications. A deeper understanding of the interplay between the intestinal microbiota and host immune responses in the context of respiratory viral infections (i.e. the gut-lung axis) is necessary to develop new treatments. This review highlights key mechanisms by which the intestinal microbiota, including its metabolites, can act locally or at distant organs to combat respiratory viruses. Therapeutics aimed at harnessing the microbiota to prevent and/or help treat respiratory viral infections represent a promising avenue for future investigation.
Tissue-resident memory T cells in protective immunity to influenza virus
Lee S, Yeung KK and Watts TH
Influenza virus is an important human pathogen with significant pandemic potential. Tissue-resident memory T cells (Trm) in the lung provide critical protection against influenza, but unlike Trm at other mucosal sites, Trm in the respiratory tract (RT) are subject to rapid attrition in mice, mirroring the decline in protective immunity to influenza virus over time. Conversely, dysfunctional Trm can drive fibrosis in aged mice. The requirement for local antigen to induce and maintain RT Trm must be considered in vaccine strategies designed to induce this protective immune subset. Here, we discuss recent studies that inform our understanding of influenza-specific respiratory Trm, and the factors that influence their development and persistence. We also discuss how these biological insights are being used to develop vaccines that induce Trm in the RT, despite the limitations to monitoring Trm in humans.
Role of trained innate immunity against mucosal cancer
Wang T, Wang Y, Zhang J and Yao Y
Mucosal tissues are frequent targets of both primary and metastatic cancers. This has highlighted the significance of both innate and adaptive anti-cancer immunity at mucosal sites. Trained innate immunity (TII) is an emerging concept defined as enhanced reactivity of innate leukocytes long after a previous stimulation that induces prolonged epigenetic, transcriptional, and metabolic changes. Trained innate leukocytes can respond to heterologous targets due to their lacking of antigen-specificity in most cases. Emerging experimental and clinical data suggest that certain microbes or their products induce TII in mucosal-associated innate leukocytes which endows heterologous anti-tumor innate immunity, in both prophylactic and therapeutic scenarios. In this mini-review, we summarize updated findings on the significance of TII in mucosal cancers. We also attempt to raise a few key questions critical to our further understanding on the roles of TII in mucosal cancers, and to the potential application of TII as anti-cancer strategy.
Editorial overview: The virome in health and disease (2022)
Matthijnssens J and Adriaenssens E
Pathogenesis of severe acute respiratory syndrome coronavirus-2 in nonhuman primates
Saturday T and van Doremalen N
The continued pressure of COVID-19 on public health worldwide underlines the need for a better understanding of the mechanisms of disease caused by severe acute respiratory syndrome coronavirus-2. Though many animal models are readily available for use, the nonhuman primate (NHP) models are considered the gold standard in recapitulating disease progression in humans. In this review, we highlight the relevant research since the beginning of the pandemic to critically evaluate the importance of this model. We characterize the disease's clinical manifestations, aspects of viral replication and shedding, induction of the host's immune response, and pathological findings that broaden our understanding of the importance of NHPs in research to strengthen our public health approach to the pandemic.
The natural virome and pandemic potential: Disease X
Lawrence P, Heung M, Nave J, Henkel C and Escudero-Pérez B
Over the last decade, the emergence of several zoonotic viruses has demonstrated that previously unknown or neglected pathogens have the potential to cause epidemics and therefore to pose a threat to global public health. Even more concerning are the estimated 1.7 million still-undiscovered viruses present in the natural environment or 'global virome', with many of these as-yet uncharacterized viruses predicted to be pathogenic for humans. Thus, in order to mitigate disease emergence and prevent future pandemics, it is crucial to identify the global extent of viral threats to which humans may become exposed. This requires cataloguing the viruses that exist in the environment within their various and diverse host species, and also understanding the viral, host, and environmental factors that dictate the circumstances that result in viral spillover into humans. We also address here which strategies can be implemented as countermeasure initiatives to reduce the risk of emergence of new diseases.