Biocompatibility of Antifogging SiO-doped Diamond-Like Carbon Laparoscope Coatings
Laparoscopes can suffer from fogging and contamination difficulties, resulting in a reduced field of view during surgery. A series of diamond-like carbon films, doped with SiO, were produced by pulsed laser deposition for evaluation as biocompatible, antifogging coatings. DLC films doped with SiO demonstrated hydrophilic properties with water contact angles under 40°. Samples subjected to plasma cleaning had improved contact angle results, with values under 5°. Doping the DLC films with SiO led to an average 40% decrease in modulus and 60% decrease in hardness. Hardness of the doped films, 12.0 - 13.2 GPa, was greater than that of the uncoated fused silica substrate, 9.2 GPa. The biocompatibility was assessed through CellTiter-Glo assays, with the films demonstrating statistically similar levels of cell viability when compared to the control media. The absence of ATP released by blood platelets in contact with the DLC coatings suggests hemocompatibility. The SiO doped films displayed improved transparency levels in comparison to undoped films, achieving up to an average of 80% transmission over the visible spectrum and an attenuation coefficient of 1.1 × 10 cm at the 450 nm wavelength. The SiO doped DLC films show promise as a method of fog prevention for laparoscopes.
Omicron SARS-CoV-2 antiviral on poly(lactic acid) with nanostructured copper coating: Wear effects
Surface modification corresponds to a set of viable technological approaches to introduce antimicrobial properties in materials that do not have such characteristics. Antimicrobial materials are important to prevent the proliferation of microorganisms and minimize the transmission of diseases caused by pathogens. Herein, poly(lactic acid) (PLA) was decorated with nanocones through copper sputtering followed by a plasma etching. Antiviral assays by Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) show that nanostructured Cu-coated PLA has high antiviral activity against Omicron SARS-CoV-2, showing a relative reduction in the amplified RNA (78.8 ± 3.9 %). Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS), and wear-resistance tests show that 20 wear cycles disrupt the surface nanocone patterns and significantly reduce the Cu content at the surface of the nanostructured Cu-coated PLA, leading to total loss of the antiviral properties of nanostructured PLA against Omicron SARS-CoV-2.
Surface chemistry in Ti-6Al-4V feedstock as influenced by powder reuse in electron beam additive manufacturing
X-ray photoelectron spectroscopy (XPS) as well as scanning and transmission electron microscopy (SEM/TEM) analysis was carried out on four Ti-6Al-4V powders used in electron beam powder-bed fusion (PBF-EB) production environments: virgin low oxygen (0.080 wt% O), reused medium oxygen (0.140 wt% O), reused high oxygen (0.186 wt% O), and virgin high oxygen (0.180 wt% O). The two objectives of this comparative analyses were to (1) investigate high oxygen containing Grade 23 Ti-6Al-4V powders which were further oxidized as a function of reuse and (2) comparing the two virgin Grade 23 and Grade 5 powders of similar oxygen content. The microstructure of the low oxygen virgin Grade 23 powder was consistent with martensitic ' microstructure, whereas the reused powder displayed tempered / Widmänstatten microstructure. XPS revealed a decrease in TiO at the surface of the reused powders with an increase in AlO. This trend is energetically favorable at the temperatures and pressures in PBF-EB machines, and it is consistent with the thermodynamics of AlO vs. TiO reactions. An unexpected amount of nitrogen was measured on the titanium powder, with a general increase in nitride on the surface of the particles as a function of reuse in the Grade 23 powder.
An electrochemical membrane-based aptasensor for detection of severe acute respiratory syndrome coronavirus-2 receptor-binding domain
Herein, we report an electrochemical membrane-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the nanoporous anodic aluminium oxide membrane (NPAOM) was first fabricated electrochemically. The NPAOM was then functionalized with 3-mercaptopropyl trimethoxysilane (NPAOM-Si-SH). After that, the NPAOM-Si-SH was decorated with gold nanoparticles by using gold ion and sodium borohydride. The NPAOM-Si-S-Au was then attached to the surface of the working electrode of a laser-engraved graphene electrode (LEGE). Subsequently, the LEGE/NPAOM-Si-S-Au was fixed inside a flow cell that was made by using a three-dimensional (3D) printer, and then thiolated aptamer was transferred into the flow cell using a pump. The electrochemical behavior of the LEGE/NPAOM-Si-S-Au-Aptamer was studied using square wave voltammetry (SWV) in the presence of potassium ferrocyanide as a redox probe. The response of the LEGE/NPAOM-Si-S-Au-Aptamer to the different concentrations of the SARS-CoV-2-RBD in human saliva sample was investigated in the concentration range of 2.5-40.0 ng/mL. The limit of the detection was found to be 0.8 ng/mL. The LEGE/NPAOM-Si-S-Au-Aptamer showed good selectivity to 5.0 ng/mL of SARS-CoV-2-RBD in the presence of five times of the interfering agents like hemagglutinin and neuraminidase as the influenza A virus major surface glycoproteins.
Highly efficient Ag doped δ-MnO decorated graphene: Comparison and application in electrochemical detection of HO
Cytotoxic HO is an inevitable part of our life, even during this contemporary pandemic COVID-19. Personal protective equipment of the front line fighter against coronavirus could be sterilized easily by HO for reuse. In this study, Ag doped δ-MnO nanorods supported graphene nanocomposite (denoted as Ag@δ-MnO/G) was synthesized as a nonenzymatic electrochemical sensor for the sensitive detection of HO. The ternary nanocomposite has overcome the poor electrical conductivity of δ-MnO and also the severe aggregation of Ag NPs. Furthermore, δ-MnO/G provided a rougher surface and large numbers of functional groups for doping more numbers of Ag atoms, which effectively modulate the electronic properties of the nanocomposite. As a result, electroactive surface area and electrical conductivity of Ag@δ-MnO/G increased remarkably as well as excellent catalytic activity observed towards HO reduction. The modified glassy carbon electrode exhibited fast amperometric response time (<2 s) in HO determination. The limit of detection was calculated as 68 nM in the broad linear range (0.005-90.64 mM) with high sensitivity of 104.43 µA mM cm. No significant interference, long-term stability, excellent reproducibility, satisfactory repeatability, practical applicability towards food samples and wastewater proved the efficiency of the proposed sensor.
Is atomic layer deposition of silver possible on N95 masks?
Due to the COVID19 outbreak, there has been increasing interest in tailoring, modifying and improving conventional personal protective equipment to increase their service life and make them more effective against viruses and bacteria. Here, atomic layer deposition (ALD) was used to functionalize the filter of N95 mask with nano-islands of silver. X-ray photoelectron spectroscopy and x-ray absorption fine structure were used for ALD silver characterization; microbiological assay was conducted to study the effectiveness of the deposited silver against the air-borne pathogen ). Results showed that silver ALD successfully functionalized the N95 mask at 90 and 120 °C for two different numbers of ALD cycles (1100 and 1500 cycles). The deposited silver nano-islands were stable on the N95 filter media against washing. The leaching of silver nano-islands was studied using inductively coupled plasma mass spectrometry of phosphate-buffered saline solution after soaking the mask in it over predetermined times. <9% of Ag was removed after a maximum time of 4 h that was investigated. Antimicrobial tests showed that for samples functionalized with 1100 ALD cycles of Ag, 76% reduction in S. aureus colony-forming units content was observed after 24 h of biofilm development on the mask surfaces.
Insights into the conformation changes of SARS-CoV-2 spike receptor-binding domain on graphene
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely spread in the world, causing more than two million deaths and seriously threatening human life. Effective protection measures are important to prevent the infection and spreading of the virus. To explore the effects of graphene on the virus adsorption and its biological properties, the adsorption process of the receptor binding domain (RBD) of SARS-CoV-2 on graphene has been investigated by molecular dynamics simulations in this paper. The results show that RBD can be quickly adsorbed onto the surface of graphene due to stacking and hydrophobic interactions. Residue PHE486 with benzene ring has stronger adsorption force and the maximum contact area with graphene. Graphene significantly affects the secondary structure of RBD area, especially on the three key sites of binding with human ACE2, GLY476, PHE486 and ASN487. The binding free energy of RBD and graphene shows that the adsorption is irreversible. Undoubtedly, these changes will inevitably affect the pathogenicity of the virus. Therefore, this study provides a theoretical basis for the application of graphene in the protection of SARS-CoV-2, and also provides a reference for the potential application of graphene in the biomedical field.
Manganese-containing Bioactive Glass Enhances Osteogenic Activity of TiO Nanotube Arrays
Titanium and its alloys are the most used biomaterials for orthopedic and dental applications. However, up to 10% of these medical devices still fail, mostly due to implant loosening and suboptimal integration at the implant site. The biomaterial surface plays a critical role in promoting osseointegration, which can reduce the risk of device failure. In this study, we propose a novel surface modification on titanium to improve osteogenic differentiation by depositing manganese-containing bioactive glass (BG) on TiO nanotube arrays. The surfaces were characterized by scanning electron microscopy, energy dispersive X-ray spectrometer, contact angle goniometry, and X-ray photoelectron spectroscopy. Cell toxicity, viability, adhesion, and proliferation of adipose-derived stem cells on the surfaces were investigated up to 7 days. To evaluate the osteogenic properties of the surfaces, alkaline phosphatase activity, total protein, osteocalcin expression, and calcium deposition were quantified up to 28 days. The results indicate that TiO nanotube arrays modified with BG promote cell growth and induce increased osteocalcin and calcium contents when compared to unmodified TiO nanotube arrays. The deposition of manganese-containing bioactive glass onto TiO nanotubes demonstrates the ability to enhance osteogenic activity on titanium, showing great potential for use in orthopedic and dental implants.
In-situ synthesis of CuO on cotton fibers with antibacterial properties and reusable photocatalytic degradation of dyes
In this study, the cotton fabrics/cuprous oxide-nanocellulose (CuO-NC) flexible and recyclable composite material (COCO) with highly efficient photocatalytic degradation of dyes and antibacterial properties was fabricated. Using flexible cotton fabrics as substrates, CuO were in-situ synthesized to make CuO uniformly grew on cotton fibers and were wrapped with NC. The photocatalytic degradation ability of COCO-5 was verified by use methylene blue (MB), the degradation rate was as high as 98.32%. The mechanism of COCO-5 photocatalysis and the process of dye degradation were analyzed by using electron paramagnetic resonance (EPR) spectrum, transient photocurrent response (TPR) spectrum, Fourier transform infrared (FTIR) spectroscopy and ion chromatography (IC). This study analyzed the complete path from electron excitation to dye degradation to harmless small molecules. Qualitative and quantitative experiments demonstrate that COCO-5 has high antibacterial activity against and , the highest antibacterial rate can reach 93.25%. Finally, the stability of COCO-5 was verified by recycling and mechanical performance tests. The textile-based CuO functionalized material has photocatalytic degradation and antibacterial properties, and the preparation process is simple and convenient for repeated use, so it has great potential in wastewater treatment containing dyes and bacteria.
Electrospun antibacterial poly(vinyl alcohol)/Ag nanoparticles membrane grafted with 3,3',4,4'-benzophenone tetracarboxylic acid for efficient air filtration
In this study, poly(vinyl alcohol) (PVA) membranes containing Ag nanoparticles (AgNPs) were prepared by electrospinning and grafted copolymerization with 3,3',4,4'-benzophenone tetracarboxylic acid (BPTA) to provide better mechanical properties, lower water vapor transmittance, and higher antibacterial activity (against and ) than the PVA/AgNPs membrane. The PVA/AgNPs/BPTA membrane showed higher antibacterial activity than the other membranes, and it produced inhibition zones with diameters of 18.12 ± 0.08 and 16.41 ± 0.05 mm against and , respectively. The PVA/AgNPs/BPTA membrane was found to be capable of promoting reactive oxygen species (ROS) formation under both light and dark conditions. Cycling experiments performed following ROS quenching showed that the best-performing composite membrane retained >70% of its original OH⋅ radical and HO charging capacity after seven cycles. In the filtration test, the electrospun nanofibrous membranes showed high filtration efficiencies of 99.98% for sodium chloride (NaCl). In addition, these membranes maintained a relatively low pressure drop of 168 Pa with a basis weight of 2.1 g m. Thus, the PVA/AgNPs/BPTA membrane was concluded to be a promising medical protective material offering the benefits of structural stability and reusability.
Reaction of BCl with H- and Cl-terminated Si(1 0 0) as a pathway for selective, monolayer doping through wet chemistry
The reaction of boron trichloride with the H and Cl-terminated Si(100) surfaces was investigated to understand the interaction of this molecule with the surface for designing wet-chemistry based silicon surface doping processes using a carbon- and oxygen-free precursor. The process was followed with X-ray photoelectron spectroscopy (XPS). Within the reaction conditions investigated, the reaction is highly effective on Cl-Si(100) for temperatures below 70°C, at which point both surfaces react with BCl. The XPS investigation followed the formation of a B 1s peak at 193.5 eV corresponding to (B-O) species. Even the briefest exposure to ambient conditions lead to hydroxylation of surface borochloride species. However, the Si 2p signature at 102 eV allowed for a confirmation of the formation of a direct Si-B bond. Density functional theory was utilized to supplement the analysis and identify possible major surface species resulting from these reactions. This work provides a new pathway to obtain a functionalized silicon surface with a direct Si-B bond that can potentially be exploited as a means of selective, ultra-shallow, and supersaturated doping.
Chemical synthesis and optical, structural, and surface characterization of InP-InO quantum dots
InP-InO colloidal quantum dots (QDs) synthesized by a single-step chemical method without injection of hot precursors (one-pot) were investigated. Specifically, the effect of the tris(trimethylsilyl)phosphine, P(TMS), precursor concentration on the QDs properties was studied to effectively control the size and shape of the samples with a minimum size dispersion. The effect of the P(TMS) precursor concentration on the optical, structural, chemical surface, and electronic properties of InP-InO QDs is discussed. The absorption spectra of InP-InO colloids, obtained by both UV-Vis spectrophotometry and photoacoustic spectroscopy, showed a red-shift in the high-energy regime as the concentration of the P(TMS) increased. In addition, these results were used to determine the band-gap energy of the InP-InO nanoparticles, which changed between 2.0 and 2.9 eV. This was confirmed by Photoluminescence spectroscopy, where a broad-band emission displayed from 2.0 to 2.9 eV is associated with the excitonic transition of the InP and InO QDs. InO and InP QDs with diameters ranging approximately from 8 to 10 nm and 6 to 9 nm were respectively found by HR-TEM. The formation of the InP and InO phases was confirmed by X-ray Photoelectron Spectroscopy.
Oxygen intercalation in PVD graphene grown on copper substrates: A decoupling approach
We investigate the intercalation process of oxygen in-between a PVD-grown graphene layer and different copper substrates as a methodology for reducing the substrate-layer interaction. This growth method leads to an extended defect-free graphene layer that strongly couples with the substrate. We have found, by means of X-ray photoelectron spectroscopy, that after oxygen exposure at different temperatures, ranging from 280 °C to 550 °C, oxygen intercalates at the interface of graphene grown on Cu foil at an optimal temperature of 500 °C. The low energy electron diffraction technique confirms the adsorption of an atomic oxygen adlayer on top of the Cu surface and below graphene after oxygen exposure at elevated temperature, but no oxidation of the substrate is induced. The emergence of the 2D Raman peak, quenched by the large interaction with the substrate, reveals that the intercalation process induces a structural undoing. As suggested by atomic force microscopy, the oxygen intercalation does not change significantly the surface morphology. Moreover, theoretical simulations provide further insights into the electronic and structural undoing process. This protocol opens the door to an efficient methodology to weaken the graphene-substrate interaction for a more efficient transfer to arbitrary surfaces.
Photosensitizing potential of tailored magnetite hybrid nanoparticles functionalized with levan and zinc (II) phthalocyanine
Phototherapies, including photodynamic therapy (PDT), have been widely used in the treatment of various diseases, especially for cancer. However, there is still a lack of effective, safe photosensitizers that would be well tolerated by patients. The combination of several methods (like phototherapy and hyperthermia) constitutes a modern therapeutic approach, which demands new materials based on components that are non-toxic without irradiation. Therefore, this study presents the synthesis and properties of novel, advanced nanomaterials in which the advantage features of the magnetic nanoparticles and photoactive compounds were combined. The primary purpose of this work was the synthesis of magnetic nanoparticles coated with biocompatible and antitumor polysaccharide - levan, previously unknown from scientific literature, and the deposition of potent photosensitizer - zinc(II) phthalocyanine on their surface. In order to better characterize the nature of the coating covering the magnetic core, the atomic force microscope analysis, a contact angle measurement, and the mechanical properties of pure levan and its blend with zinc(II) phthalocyanine films were investigated. This magnetic nanomaterial revealed the ability to generate singlet oxygen upon exposure to light. Finally, preliminary toxicity of obtained nanoparticles was tested using the Microtox® test - with and without irradiation.
Creating superhydrophobic and antibacterial surfaces on gold by femtosecond laser pulses
Femtosecond laser-induced surface structuring is a promising technique for the large-scale formation of nano- and microscale structures that can effectively modify materials' optical, electrical, mechanical, and tribological properties. Here we perform a systematic study on femtosecond laser-induced surface structuring on gold (Au) surface and their effect on both hydrophobicity and bacterial-adhesion properties. We created various structures including subwavelength femtosecond laser-induced periodic surface structures (fs-LIPSSs), fs-LIPSSs covered with nano/microstructures, conic and 1D-rod-like structures ( 6 μm), and spherical nanostructures with a diameter 10 nm, by raster scanning the laser beam, at different laser fluences. We show that femtosecond laser processing turns originally hydrophilic Au to a superhydrophobic surface. We determine the optimal conditions for the creation of the different surface structures and explain the mechanism behind the formed structures and show that the laser fluence is the main controlling parameter. We demonstrate the ability of all the formed surface structures to reduce the adhesion of Escherichia coli (E. coli) bacteria and show that fs-LIPSSs enjoys superior antibacterial adhesion properties due to its large-scale surface coverage. Approximately 99.03% of the fs-LIPSSs surface is free from bacterial adhesion. The demonstrated physical inhibition of bacterial colonies and biofilm formation without antibiotics is a crucial step towards reducing antimicrobial-resistant infections.
Indocyanine green modified silica shells for colon tumor marking
Marking colon tumors for surgery is normally done with the use of India ink. However, non-fluorescent dyes such as India ink cannot be imaged below the tissue surface and there is evidence for physiological complications such as abscess, intestinal perforation and inconsistency of dye injection. A novel infrared marker was developed using FDA approved indocyanine green (ICG) dye and ultrathin hollow silica nanoshells (ICG/HSS). Using a positively charged amine linker, ICG was non-covalently adsorbed onto the nanoparticle surface. For ultra-thin wall 100 nm diameter silica shells, a bimodal ICG layer of < 3 nm is was formed. Conversely, for thicker walls on 2 μm diameter silica shells, the ICG layer was only bound to the outer surface and was 6 nm thick. In vitro testing of fluorescent emission showed the particles with the thinner coating were considerably more efficient, which is consistent with self-quenching reducing emission shown in the thicker ICG coatings. Ex-vivo testing showed that ICG bound to the 100 nm hollow silica shells was visible even under 1.5 cm of tissue. In vivo experiments showed that there was no diffusion of the ICG/nanoparticle marker in tissue and it remained imageable for as long as 12 days.
Zinc Oxide nanoparticles induce oxidative and proteotoxic stress in ovarian cancer cells and trigger apoptosis Independent of p53-mutation status
Ovarian cancer continues to be the most lethal among gynecological malignancies and the major cause for cancer-associated mortality among women. Limitations of current ovarian cancer therapeutics is highlighted by the high frequency of drug-resistant recurrent tumors and the extremely poor 5-year survival rates. Zinc oxide nanoparticles (ZnO-NPs) have shown promise in various biomedical applications including utility as anti-cancer agents. Here, we describe the synthesis and characterization of physical properties of ZnO-NPs of increasing particle size (15 nm - 55 nm) and evaluate their benefits as an ovarian cancer therapeutic using established human ovarian cancer cell lines. Our results demonstrate that the ZnO-NPs induce acute oxidative and proteotoxic stress in ovarian cancer cells leading to their death via apoptosis. The cytotoxic effect of the ZnO-NPs was found to increase slightly with a decrease in nanoparticle size. While ZnO-NPs caused depletion of both wild-type and gain-of-function (GOF) mutant p53 protein in ovarian cancer cells, their ability to induce apoptosis was found to be independent of the p53-mutation status in these cells. Taken together, these results highlight the potential of ZnO-NPs to serve as an anti-cancer therapeutic agent for treating ovarian cancers independent of the p53 mutants of the cancer cells.
Ultra-precise surface processing of LYSO scintillator crystals for Positron Emission Tomography
The Lutetium-Yttrium Oxyorthosilicate (LYSO) is one of the most widely used scintillation crystal in the high-performance Positron Emission Tomography (PET) systems. The quality of the surface finish of the LYSO has an important impact on the light output, the decoding performance, the energy resolution and timing resolution of the PET detectors and systems. In this paper, we present an ultra-precise method for processing the surface of LYSO crystals. The hardness and elastic modulus of the crystals were initially measured using Nano indentation technology. The scintillators were fixed onto the plate in sparse, serried and continuous arrangements and polished using an alumina (AlO) and cerium oxide (CeO) polishing solution with particles of varying size. We used a magnetorheological-polishing technique to polish the LYSO crystals. The polishing solution here included hydroxyl iron powder and hard abrasives. The hardness and elastic modulus of the crystals in question was, respectively, 11.18 ± 0.50 and 155.78 ± 4gigapascals (GPa). A 3D optical surface profiler (3D-OPS) and an atomic force microscope (AFM) were used to evaluate the quality of the polished surfaces. The average roughness of Ra 0.55 nm measured by 3D-OPS was achieved using a precise plate grinding and polishing technique. The magnetorheological-polishing method also obtained an excellent roughness of Ra 0.75 nm (3D-OPS). Our report of the use of these processing technologies can serve as a foundation for further in-depth research regarding the optimal techniques for scintillator surface processing.
Formation of aggregated nanoparticle spheres through femtosecond laser surface processing
A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.
Evaluation of the colloidal stability and adsorption performance of reduced graphene oxide-elemental silver/magnetite nanohybrids for selected toxic heavy metals in aqueous solutions
Reduced graphene oxide (rGO) hybridized with magnetite and/or elemental silver (rGO/magnetite, rGO/silver, and rGO/magnetite/silver) nanoparticles were evaluated as potential adsorbents for toxic heavy metal ions (Cd (II), Ni(II), Zn(II), Co(II), Pb(II), and Cu(II)). Although the deposition of iron oxide and silver nanoparticles on the rGO nanosheets played an inhibitory role in metal ion adsorption, the metal adsorption efficiency by the nanohybrids (NHs) was still higher than that reported for many other sorbents (e.g., activated biochar, commercial resins, and nanosized hydrated Zr(IV) oxide particles). X-ray photoelectron spectroscopy analyses revealed that complexation with deprotonated adsorbents and cation exchange was an important mechanism for Cd(II) ion removal by the rGO and NHs. Competitive adsorption tests using multi metals showed that the adsorption affinity of metal ions on the rGO and its NHs follows the order (Cu(II), Zn(II)) > Ni(II) > Co(II) > (Pb(II), Cd(II)), which is similar to the order observed for single-metal adsorption experiments. These results can be explained by the destabilization abilities of the rGO and NHs, as well as the ionic radii of the considered metal ions. Our findings demonstrate the feasibility of using rGO-based NHs as highly efficient adsorbents for heavy metal removal from water.
Operational and environmental conditions regulate the frictional behavior of two-dimensional materials
The friction characteristics of single-layer h-BN, MoS, and graphene were systematically investigated via friction force microscopy measurements at various operational (e.g., normal force and sliding speed) and environmental (e.g., relative humidity and thermal annealing) conditions. The low friction characteristics of these single-layer materials were clearly observed from the normal force-dependent friction results, and their interfacial shear strengths were further estimated using a Hertz-plus-offset model. In addition, speed-dependent friction characteristics clearly demonstrated two regimes of friction as a function of sliding speed - the first is the logarithmic increase in friction with sliding speed regime at sliding speeds smaller than the critical speed and the second is the friction plateau regime at sliding speeds greater than the critical speed. Fundamental parameters such as effective shape of the interaction potential and its corrugation amplitude for these single-layer materials were characterized using the thermally-activated Prandtl-Tomlinson model. Moreover, friction of single-layer h-BN, MoS, and graphene was found to increase with relative humidity and decrease with thermal annealing; these trends were attributed to the diffusion of water molecules to the interface between the single-layer materials and their substrates, which leads to an increase in the puckering effect at the tip-material interface and interaction potential corrugation. The enhanced puckering effect was verified via molecular dynamics simulations. Overall, the findings enable a comprehensive understanding of friction characteristics for several classes of two-dimensional materials, which is important to elucidate the feasibility of using these materials as protective and solid-lubricant coating layers for nanoscale devices.