Materials Today Chemistry

Porous carbon tubes from recycling waste COVID-19 masks for optimization of 8 mol% YO-doped tetragonal zirconia polycrystalline nanopowder
Sun Q, Liu T, Wen T and Yu J
Disposable polypropylene medical masks are widely used to protect people from injury caused by COVID-19 worldwide. However, disposable medical masks are non-biodegradable materials, and the accumulation of waste masks can pollute the environment and waste resources without a reasonable recycling method. The aims of this study are to transform waste masks into carbon materials and to use them as a dispersant in preparing high-quality 8 mol% YO-doped tetragonal zirconia nanopowders. The waste masks were carbonized to get a carbon source in the first step, then KOH was used to etch the carbon source creating a micropores structure in the carbon material after the carbon-bed heat treatment method. The resulting carbon material is a porous tube structure with a high specific surface area (1220.34 m/g) and adsorption capacity. The as-obtained porous carbon tubes were applied as a dispersant to produce 8 mol% YO-doped tetragonal zirconia nanopowders, and the resulting nanopowders owned well-dispersed and had the smallest particle size than that prepared by activated carbon as a dispersant. Besides, the sintered 8 mol% YO-doped tetragonal zirconia ceramic possessed high density, which resulted in higher ionic conductivity. These findings suggest that waste face masks can be recycled to prepare high-added-value carbon materials and provide a green and low-cost method to reuse polypropylene waste materials.
COVID-19 impedimetric biosensor based on polypyrrole nanotubes, nickel hydroxide and VHH antibody fragment: specific, sensitive, and rapid viral detection in saliva samples
Santos A, Macedo de Souza Brandão AP, Hryniewicz BM, Abreu H, Bach-Toledo L, Schuster da Silva S, Deller AE, Rogerio VZ, Baêta Rodrigues DS, Hiraiwa PM, Guimarães BG, Marchesi LF, Carvalho de Oliveira J, Gradia DF, Soares FLF, Zanchin NIT, Camargo de Oliveira C and Vidotti M
SARS-CoV-2 rapid spread required urgent, accurate, and prompt diagnosis to control the virus dissemination and pandemic management. Several sensors were developed using different biorecognition elements to obtain high specificity and sensitivity. However, the task to achieve these parameters in combination with fast detection, simplicity, and portability to identify the biorecognition element even in low concentration remains a challenge. Therefore, we developed an electrochemical biosensor based on polypyrrole nanotubes coupled via Ni(OH) ligation to an engineered antigen-binding fragment of heavy chain-only antibodies (VHH) termed Sb#15. Herein we report Sb#15-His6 expression, purification, and characterization of its interaction with the receptor-binding domain (RBD) of SARS-CoV-2 in addition to the construction and validation of a biosensor. The recombinant Sb#15 is correctly folded and interacts with the RBD with a dissociation constant (K) of 27.1 ± 6.4 nmol/L. The biosensing platform was developed using polypyrrole nanotubes and Ni(OH), which can properly orientate the immobilization of Sb#15-His6 at the electrode surface through His-tag interaction for the sensitive SARS-CoV-2 antigen detection. The quantification limit was determined as 0.01 pg/mL using recombinant RBD, which was expressively lower than commercial monoclonal antibodies. In pre-characterized saliva, both Omicron and Delta SARS-CoV-2 were accurately detected only in positive samples, meeting all the requirements recommended by the World Health Organization for in vitro diagnostics. A low sample volume of saliva is needed to perform the detection, providing results within 15 min without further sample preparations. In summary, a new perspective allying recombinant VHHs with biosensor development and real sample detection was explored, addressing the need for accurate, rapid, and sensitive biosensors.
Artificial Esterase for Cooperative Catalysis of Ester Hydrolysis at pH 7
Bose I, Bahrami F and Zhao Y
Ester is one of the most prevalent functional groups in natural and man-made products. Natural esterases hydrolyze nonactivated alkyl esters readily but artificial esterases generally use highly activated -nitrophenyl esters as substrates. We report synthetic esterases constructed through molecular imprinting in cross-linked micelles. The water-soluble nanoparticle catalysts contain a thiouronium cation to mimic the oxyanion hole and a nearby base to assist the hydrolysis. Whereas this catalytic motif readily affords large rate acceleration for the hydrolysis of -nitrophenyl hexanoate, nonactivated cyclopentyl hexanoate demands catalytic groups that can generate a strong nucleophile (hydroxide) in the active site. The hydroxide is stabilized by the protonated base when the external solution is at pH 7, enabling the hydrolysis of activated and nonactivated esters under neutral conditions.
New insights from nanotechnology in SARS-CoV-2 detection, treatment strategy, and prevention
Solanki R, Shankar A, Modi U and Patel S
The recent outbreak of SARS-CoV-2 resulted into the deadly COVID-19 pandemic, which has made a profound impact on mankind and the world health care system. SARS-CoV-2 is mainly transmitted within the population via symptomatic carriers, enters the host cell via ACE2 and TMPSSR2 receptors and damages the organs. The standard diagnostic tests and treatment methods implemented lack required efficiency to beat SARS-CoV-2 in the race of its spreading. The most prominently used diagnostic test,reverse transcription-polymerase chain reaction (a nucleic acid-based method), has limitations including a prolonged time taken to reveal results, limited sensitivity, a high rate of false negative results, and lacking specificity due to a homology with other viruses. Furthermore, as part of the treatment, antiviral drugs such as remdesivir, favipiravir, lopinavir/ritonavir, chloroquine, daclatasvir, atazanavir, and many more have been tested clinically to check their potency for the treatment of SARS-CoV-2 but none of these antiviral drugs are the definitive cure or suitable prophylaxis. Thus, it is always required to combat SARS-CoV-2 spread and infection for a better and precise prognosis. This review answers the above mentioned challenges by employing nanomedicine for the development of improved detection, treatment, and prevention strategies for SARS-CoV-2. In this review, nanotechnology-based detection methods such as colorimetric assays, photothermal biosensors, molecularly imprinted nanoparticles sensors, electrochemical nanoimmunosensors, aptamer-based biosensors have been discussed. Furthermore, nanotechnology-based treatment strategies involving polymeric nanoparticles, metallic nanoparticles, lipid nanoparticles, and nanocarrier-based antiviral siRNA delivery have been depicted. Moreover, SARS-CoV-2 prevention strategies, which include the nanotechnology for upgrading personal protective equipment, facemasks, ocular protection gears, and nanopolymer-based disinfectants, have been also reviewed. This review will provide a one-site informative platform for researchers to explore the crucial role of nanomedicine in managing the COVID-19 curse more effectively.
Evaluation of the degradation of the graphene-polypropylene composites of masks in harsh working conditions
Torres I, González-Tobío B, Ares P, Gómez-Herrero J and Zamora F
The recent COVID-19 outbreak has led health authorities to recommend at least the use of surgical masks, most preferably respirators (FFP2 or KN95), to prevent the spread of the virus. Non-woven fabrics have been chosen as the best option to manufacture the face masks, due to their filtration efficiency, low cost, and versatility. Modifying the mask filters with graphene has been of great interest due to its potential use as antibacterial and virucidal properties. Indeed, some companies have commercialized face masks in which graphene is coated and/or embedded. However, the Canadian sanitary authorities advised against using the Shandong Shengquan New Materials Co. graphene masks because of the possibility of pulmonary damage produced by graphene inhalation. Thus, we have analyzed the stability of the graphene filter of these masks and compared it with two other commercially available graphene mask filters, evaluating the morphological and spectroscopical change of the fibers, as well as the particles released during the endurance tests. Our work introduces the necessary tools and methodology to evaluate the potential degradation of face masks under extreme working conditions. These methods complement the present standard tests ensuring the security of the new filters based on composites or nanomaterials.
Influence of particle size on the SARS-CoV-2 spike protein detection using IgG-capped gold nanoparticles and dynamic light scattering
Ligiero CBP, Fernandes TS, D'Amato DL, Gaspar FV, Duarte PS, Strauch MA, Fonseca JG, Meirelles LGR, Bento da Silva P, Azevedo RB, Aparecida de Souza Martins G, Archanjo BS, Buarque CD, Machado G, Percebom AM and Ronconi CM
Due to the unprecedented and ongoing nature of the coronavirus outbreak, the development of rapid immunoassays to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its highly contagious variants is an important and challenging task. Here, we report the development of polyclonal antibody-functionalized spherical gold nanoparticle biosensors as well as the influence of the nanoparticle sizes on the immunoassay response to detect the SARS-CoV-2 spike protein by dynamic light scattering. By monitoring the increment in the hydrodynamic diameter (ΔD) by dynamic light scattering measurements in the antigen-antibody interaction, SARS-CoV-2 S-protein can be detected in only 5 min. The larger the nanoparticles, the larger ΔD in the presence of spike protein. From adsorption isotherm, the calculated binding constant ( ) was 83 nM and the estimated limit of detection was 13 ng/mL (30 pM). The biosensor was stable up to 90 days at 4 °C. Therefore, the biosensor developed in this work could be potentially applied as a fast and sensible immunoassay to detect SARS-CoV-2 infection in patient samples.
Development of polypyrrole (nano)structures decorated with gold nanoparticles toward immunosensing for COVID-19 serological diagnosis
Hryniewicz BM, Volpe J, Bach-Toledo L, Kurpel KC, Deller AE, Soares AL, Nardin JM, Marchesi LF, Simas FF, Oliveira CC, Huergo L, Souto DEP and Vidotti M
The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion in humans is crucial for suitable infection control. In this sense, many studies have focused on increasing the sensibility, lowering the detection limits and minimizing false negative/positive results. Thus, biosensors based on nanoarchitectures of conducting polymers are promising alternatives to more traditional materials since they can hold improved surface area, higher electrical conductivity and electrochemical activity. In this work, we reported the analytical comparison of two different conducting polymers morphologies for the development of an impedimetric biosensor to monitor SARS-CoV-2 seroconversion in humans. Biosensors based on polypyrrole (PPy), synthesized in both globular and nanotubular (NT) morphology, and gold nanoparticles are reported, using a self-assembly monolayer of 3-mercaptopropionic acid and covalently linked SARS-CoV-2 Nucleocapsid protein. First, the novel hybrid materials were characterized by electron microscopy and electrochemical measurements, and the biosensor step-by-step construction was characterized by electrochemical and spectroscopic techniques. As a proof of concept, the biosensor was used for the impedimetric detection of anti-SARS-CoV-2 Nucleocapsid protein monoclonal antibodies. The results showed a linear response for different antibody concentrations, good sensibility and possibility to quantify 7.442 and 0.4 ng/mL of monoclonal antibody for PPy in the globular and NT morphology, respectively. The PPy-NTs biosensor was able to discriminate serum obtained from COVID-19 positive versus negative clinical samples and is a promising tool for COVID-19 immunodiagnostic, which can contribute to further studies concerning rapid, efficient, and reliable detections.
A Review on Antibacterial Silk Fibroin-based Biomaterials: Current State and Prospects
Ghalei S and Handa H
Bacterial contamination of biomaterials is a common problem and a serious threat to human health worldwide. Therefore, the development of multifunctional biomaterials that possess antibacterial properties and can resist infection is a continual goal for biomedical applications. Silk fibroin (SF), approved by U.S. Food and Drug Administration (FDA) as a biomaterial, is one of the most widely studied natural polymers for biomedical applications due to its unique mechanical properties, biocompatibility, tunable biodegradation, and versatile material formats. In the last decade, many methods have been employed for the development of antibacterial SF-based biomaterials (SFBs) such as physical loading or chemical functionalization of SFBs with different antibacterial agents and bio-inspired surface modifications. In this review, we first describe the current understanding of the composition and structure-properties relationship of SF as a leading-edge biomaterial. Then we demonstrate the different antibacterial agents and methods implemented for the development of bactericidal SFBs, their mechanisms of action, and different applications. We briefly address their fabrication methods, advantages, and limitations, and finally discuss the emerging technologies and future trends in this research area.
Engineering hairy cellulose nanocrystals for chemotherapy drug capture
Young SAE, Muthami J, Pitcher M, Antovski P, Wamea P, Murphy RD, Haghniaz R, Schmidt A, Clark S, Khademhosseini A and Sheikhi A
Cancer is one of the leading causes of death worldwide, affecting millions of people every year. While chemotherapy remains one of the most common cancer treatments in the world, the severe side effects of chemotherapy drugs impose serious concerns to cancer patients. In many cases, the chemotherapy can be localized to maximize the drug effects; however, the drug systemic circulation induces undesirable side effects. Here, we have developed a highly efficient cellulose-based nanoadsorbent that can capture more than 6000 mg of doxorubicin (DOX), one of the most widely used chemotherapy drugs, per gram of the adsorbent at physiological conditions. Such drug capture capacity is more than 3200% higher than other nanoadsorbents, such as DNA-based platforms. We show how anionic hairy cellulose nanocrystals, also known as electrosterically stabilized nanocrystalline cellulose (ENCC), bind to positively charged drugs in human serum and capture DOX immediately without imposing any cytotoxicity and hemolytic effects. We elucidate how ENCC provides a remarkable platform for biodetoxification at varying pH, ionic strength, ion type, and protein concentration. The outcome of this research may pave the way for developing the next generation and drug capture additives and devices.
Structural behavior of monomer of SARS-CoV-2 spike protein during initial stage of adsorption on graphene
Benková Z and Cordeiro MNDS
Spike glycoprotein of the SARS-CoV-2 virus and its structure play a crucial role in the infections of cells containing angiotensin-converting enzyme 2 (ACE2) as well as in the interactions of this virus with surfaces. Protection against viruses and often even their deactivation is one of the great varieties of graphene applications. The structural changes of the non-glycosylated monomer of the spike glycoprotein trimer (denoted as S-protein in this work) triggered by its adsorption onto graphene at the initial stage are investigated by means of atomistic molecular dynamics simulations. The adsorption of the S-protein happens readily during the first 10 ns. The shape of the S-protein becomes more prolate during the adsorption, but this trend, albeit less pronounced, is observed also for the freely relaxing S-protein in water. The receptor-binding domain (RBD) of the free and adsorbed S-protein manifests itself as the most rigid fragment of the whole S-protein. The adsorption even enhances the rigidity of the whole S-protein as well as its subunits. Only one residue of the RBD involved in the specific interactions with ACE2 during the cell infection is involved in the direct contact of the adsorbed S-protein with the graphene. The new intramolecular hydrogen bonds formed during the S-protein adsorption replace the S-protein-water hydrogen bonds; this trend, although less apparent, is observed also during the relaxation of the free S-protein in water. In the initial phase, the secondary structure of the RBD fragment specifically interacting with ACE2 receptor is not affected during the S-protein adsorption onto the graphene.
The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management
Yadav AK, Verma D, Kumar A, Kumar P and Solanki PR
The World Health Organization (WHO) has declared the COVID-19 an international health emergency due to the severity of infection progression, which became more severe due to its continuous spread globally and the unavailability of appropriate therapy and diagnostics systems. Thus, there is a need for efficient devices to detect SARS-CoV-2 infection at an early stage. Nowadays, the reverse transcription polymerase chain reaction (RT-PCR) technique is being applied for detecting this virus around the globe; however, factors such as stringent expertise, long diagnostic times, invasive and painful screening, and high costs have restricted the use of RT-PCR methods for rapid diagnostics. Therefore, the development of cost-effective, portable, sensitive, prompt and selective sensing systems to detect SARS-CoV-2 in biofluids at fM/pM/nM concentrations would be a breakthrough in diagnostics. Immunosensors that show increased specificity and sensitivity are considerably fast and do not imply costly reagents or instruments, reducing the cost for COVID-19 detection. The current developments in immunosensors perhaps signify the most significant opportunity for a rapid assay to detect COVID-19, without the need of highly skilled professionals and specialized tools to interpret results. Artificial intelligence (AI) and the Internet of Medical Things (IoMT) can also be equipped with this immunosensing approach to investigate useful networking through database management, sharing, and analytics to prevent and manage COVID-19. Herein, we represent the collective concepts of biomarker-based immunosensors along with AI and IoMT as smart sensing strategies with bioinformatics approach to monitor non-invasive early stage SARS-CoV-2 development, with fast point-of-care (POC) diagnostics as the crucial goal. This approach should be implemented quickly and verified practicality for clinical samples before being set in the present times for mass-diagnostic research.
Potential of graphene-based materials to combat COVID-19: properties, perspectives, and prospects
Srivastava AK, Dwivedi N, Dhand C, Khan R, Sathish N, Gupta MK, Kumar R and Kumar S
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new virus in the coronavirus family that causes coronavirus disease (COVID-19), emerges as a big threat to the human race. To date, there is no medicine and vaccine available for COVID-19 treatment. While the development of medicines and vaccines are essentially and urgently required, what is also extremely important is the repurposing of smart materials to design effective systems for combating COVID-19. Graphene and graphene-related materials (GRMs) exhibit extraordinary physicochemical, electrical, optical, antiviral, antimicrobial, and other fascinating properties that warrant them as potential candidates for designing and development of high-performance components and devices required for COVID-19 pandemic and other futuristic calamities. In this article, we discuss the potential of graphene and GRMs for healthcare applications and how they may contribute to fighting against COVID-19.
Resilient and agile engineering solutions to address societal challenges such as coronavirus pandemic
Goel S, Hawi S, Goel G, Thakur VK, Agrawal A, Hoskins C, Pearce O, Hussain T, Upadhyaya HM, Cross G and Barber AH
The world is witnessing tumultuous times as major economic powers including the US, UK, Russia, India, and most of Europe continue to be in a state of lockdown. The worst-hit sectors due to this lockdown are sales, production (manufacturing), transport (aerospace and automotive) and tourism. Lockdowns became necessary as a preventive measure to avoid the spread of the contagious and infectious "ronarus isease 20 (COVID-19). This newly identified disease is caused by a new strain of the virus being referred to as evere cute espiratory yndrome ronairus (SARS CoV-2; formerly called 2019-nCoV). We review the current medical and manufacturing response to COVID-19, including advances in instrumentation, sensing, use of lasers, fumigation chambers and development of novel tools such as lab-on-the-chip using combinatorial additive and subtractive manufacturing techniques and use of molecular modelling and molecular docking in drug and vaccine discovery. We also offer perspectives on future considerations on climate change, outsourced versus indigenous manufacturing, automation, and antimicrobial resistance. Overall, this paper attempts to identify key areas where manufacturing can be employed to address societal challenges such as COVID-19.
Nano-enabled biosensing systems for intelligent healthcare: towards COVID-19 management
Mujawar MA, Gohel H, Bhardwaj SK, Srinivasan S, Hickman N and Kaushik A
Biosensors are emerging as efficient (sensitive and selective) and affordable analytical diagnostic tools for early-stage disease detection, as required for personalized health wellness management. Low-level detection of a targeted disease biomarker (pM level) has emerged extremely useful to evaluate the progression of disease under therapy. Such collected bioinformatics and its multi-aspects-oriented analytics is in demand to explore the effectiveness of a prescribed treatment, optimize therapy, and correlate biomarker level with disease pathogenesis. Owing to nanotechnology-enabled advancements in sensing unit fabrication, device integration, interfacing, packaging, and sensing performance at point-of-care (POC) has rendered diagnostics according to the requirements of disease management and patient disease profile i.e. in a personalized manner. Efforts are continuously being made to promote the state of art biosensing technology as a next-generation non-invasive disease diagnostics methodology. Keeping this in view, this progressive opinion article describes personalized health care management related analytical tools which can provide access to better health for everyone, with overreaching aim to manage healthy tomorrow timely. Considering accomplishments and predictions, such affordable intelligent diagnostics tools are urgently required to manage COVID-19 pandemic, a life-threatening respiratory infectious disease, where a rapid, selective and sensitive detection of human beta severe acute respiratory system coronavirus (SARS-COoV-2) protein is the key factor.
Nanotechnology and its challenges in the food sector: a review
Kumar P, Mahajan P, Kaur R and Gautam S
Antibacterial activity of nanoparticles has received significant attention worldwide because of their great physical and chemical stability, excellent magnetic properties, and large lattice constant values. These properties are predominate in the food science for enhancing the overall quality, shelf life, taste, flavor, process-ability, etc., of the food. Nanoparticles exhibit attractive antibacterial activity due to their increased specific surface area leading to enhanced surface reactivity. When nanoparticles are suspended in the biological culture, they encounter various biological interfaces, resulting from the presence of cellular moieties like DNA, proteins, lipids, polysaccharides, etc., which helps antibacterial properties in many ways. This paper reviews different methods used for the synthesis of nanoparticles but is specially focusing on the green synthesis methods owing to its non-toxic nature towards the environment. This review highlights their antibacterial application mainly in the food sector in the form of food-nanosensors, food-packaging, and food-additives. The possible mechanism of nanoparticles for their antibacterial behavior underlying the interaction of nano-particles with bacteria, (i) excessive ROS generation including hydrogen peroxide (HO), OH (hydroxyl radicals), and O (peroxide); and (ii) precipitation of nano-particles on the bacterial exterior; which, disrupts the cellular activities, resulting in membranes disturbance. All these phenomena results in the inhibition of bacterial growth. Along with this, their current application and future perspectives in the food sector are also discussed. Nanoparticles help in destroying not only pathogens but also deadly fungi and viruses. Most importantly it is required to focus more on the crop processing and its containment to stop the post-harvesting loss. So, nanoparticles can act as a smart weapon towards the sustainable move.
HuBiogel incorporated fibro-porous hybrid nanomatrix graft for vascular tissue interfaces
Patel HN, Vohra YK, Singh R and Thomas V
Native extracellular matrix (ECM) possesses the biochemical cues to promote cell survival. However, decellularized, the ECM loses its cell supporting mechanical integrity. We report, here, a novel biohybrid vascular graft of polycaprolactone (PCL), poliglecaprone (PGC) incorporated with human biomatrix as functional materials for vascular tissue interfacing by electrospinning, thus harnessing the biochemical cues from the ECM and the mechanical integrity of the polymer blends. The fabricated fibro-porous tubular small diameter graft ( = 4 mm) from polymer blend was coated with a cocktail of collagenous matrix derived from human placenta called HuBiogel™. The compositional, morphological, and mechanical properties of graft were measured and compared with a non-coated tubular PCL/PGC graft using Fourier Transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). BCA assay was used to calculate the protein content and coating-uniformity throughout the hybrid graft. Mechanical properties such as tensile strength (1.6 MPa), Young's modulus (2.4 MPa), burst pressure (>1900 mmHg), and suture retention strength (2.3 N) of hybrid graft were found to be comparable to native blood vessels. Protein coating has improved the hydrophilicity and the biocompatibility (cell viability and cell-attachment) enhanced with human umbilical vein endothelial cells (HUVECs) seeded onto the lumen layer of the graft over two weeks. The overall results promise this new biohybrid graft to be a potential candidate for vascular tissue interface and regeneration.
Hydrogen evolution reaction from bare and surface-functionalized few-layered MoS nanosheets in acidic and alkaline electrolytes
Lai B, Singh SC, Bindra JK, Saraj CS, Shukla A, Yadav TP, Wu W, McGill SA, Dalal NS, Srivastava A and Guo C
Hydrogen is considered as an ideal and sustainable energy carrier because of its high energy density and carbon-free combustion. Electrochemical water splitting is the only solution for uninterrupted, scalable, and sustainable production of hydrogen without carbon emission. However, a large-scale hydrogen production through electrochemical water splitting depends on the availability of earth-abundant electrocatalysts and a suitable electrolyte medium. In this article, we demonstrate that hydrogen evolution reaction (HER) performance of electrocatalytic materials can be controlled by their surface functionalization and selection of a suitable electrolyte solution. Here, we report syntheses of few-layered MoS nanosheets, NiO nanoparticles (NPs), and multiwalled carbon nanotubes (MWCNTs) using scalable production methods from earth-abundant materials. Magnetic measurements of as-produced electrocatalyst materials demonstrate that MoS nanoflakes are diamagnetic, whereas surface-functionalized MoS and its composite with carbon nanotubes have strong ferromagnetism. The HER performance of the few-layered pristine MoS nanoflakes, MoS/NiO NPs, and MoS/NiO NPs/MWCNT nanocomposite electrocatalysts are studied in acidic and alkaline media. For bare MoS, the values of overpotential (η) in alkaline and acidic media are 0.45 and 0.54 V, respectively. Similarly, the values of current density at 0.5 V overpotential are 27 and 6.2 mA/cm in alkaline and acidic media, respectively. The surface functionalization acts adversely in the both alkaline and acidic media. MoS nanosheets functionalized with NiO NPs also demonstrated excellent performance for oxygen evolution reaction with anodic current of ~60 mA/cm and Tafel slope of 78 mVdec in alkaline medium.
Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review
More MS, Joshi PG, Mishra YK and Khanna PK
Schiff bases are versatile organic compounds which are widely used and synthesized by condensation reaction of different amino compound with aldehydes or ketones known as imine. Schiff base ligands are considered as privileged ligands as they are simply synthesized by condensation. They show broad range of application in medicine, pharmacy, coordination chemistry, biological activities, industries, food packages, dyes, and polymer and also used as an O detector. Semicarbazone is an imine derivative which is derived from condensation of semicarbazide and suitable aldehyde and ketone. Imine ligand-containing transition metal complexes such as copper, zinc, and cadmium have shown to be excellent precursors for synthesis of metal or metal chalcogenide nanoparticles. In recent years, the researchers have attracted enormous attention toward Schiff bases, semicarbazones, thiosemicarbazones, and their metal complexes owing to numerous applications in pharmacology such as antiviral, antifungal, antimicrobial, antimalarial, antituberculosis, anticancer, anti-HIV, catalytic application in oxidation of organic compounds, and nanotechnology. In this review, we summarize the synthesis, structural, biological, and catalytic application of Schiff bases as well as their metal complexes.
POLYBENZIMIDAZOLE NANOFIBERS FOR NEURAL STEM CELL CULTURE
Garrudo FFF, Udangawa RN, Hoffman PR, Sordini L, Chapman CA, Mikael PE, Ferreira FA, Silva JC, Rodrigues CAV, Cabral JMS, Morgado JMF, Ferreira FC and Linhardt RJ
Neurodegenerative diseases compromise the quality of life of increasing numbers of the world's aging population. While diagnosis is possible no effective treatments are available. Strong efforts are needed to develop new therapeutic approaches, namely in the areas of tissue engineering and (DBS). Conductive polymers are the ideal material for these applications due to the positive effect of conducting electricity on neural cell's differentiation profile. This novel study assessed the biocompatibility of polybenzimidazole (PBI), as electrospun fibers and after being doped with different acids. Firstly, doped films of PBI were used to characterize the materials' contact angle and electroconductivity. After this, fibers were electrospun and characterized by SEM, FTIR and TGA. Neural Stem Cell's (NSC) proliferation was assessed and their growth rate and morphology on different samples was determined. Differentiation of NSCs on PBI - CSA fibers was also investigated and gene expression (SOX2, NES, GFAP, Tuj1) was assessed through Immunochemistry and qPCR. All the samples tested were able to support neural stem cell (NSC) proliferation without significant changes on the cell's typical morphology. Successfully differentiation of NSCs towards neural cells on PBI - CSA fibers was also achieved. This promising PBI fibrous scaffold material is envisioned to be used in neural cell engineering applications, including scaffolds, models for drug screening and electrodes.
Comparative effects of controlled release of sodium bicarbonate and doxorubicin on osteoblast and osteosarcoma cell viability
Banerjee D and Bose S
This study intends to analyze the effects of doxorubicin and sodium bicarbonate release with polycaprolactone (PCL) coating on calcium phosphate system which is a bone like material, on the cell viability and proliferation of osteosarcoma and osteoblast. Increased systematic pH concentrations locally by the release of sodium bicarbonate diminished acidosis and hence, alleviated malignancy. In our studies, we have shown that the same of dosage of doxorubicin inhibited both osteoblast and osteosarcoma cell attachment and viability whereas, sodium bicarbonate abated osteosarcoma cell proliferation. Sodium bicarbonate also inhibited osteoblast cell proliferation in the early time points, however, the cell viability increased after the initial burst release of the molecule. Polymer coating on calcium phosphate-based implants, as carriers of drug, can minimize chances of toxic effects of higher oral drug dosage in the body, and also help in delivering effective doses of drugs, locally to the target tissues, as compared to the oral drug delivery approach. A coating of PCL was thus incorporated to control the initial burst release of bicarbonate, which enhanced the osteoblast cell viability, but was capable of diminishing osteosarcoma cell proliferation. The novelty and clinical significance of this study lies in the understanding of unique delivery using encapsulated naturally occurring and more benign sodium bicarbonate, for usage after excision of the cancerous bone, without any adverse effects on normal bone cells.
Mechanically tunable, human mesenchymal stem cell viable poly(ethylene glycol)-oxime hydrogels with invariant precursor composition, concentration, and stoichiometry
Dilla RA, Xu Y, Zander ZK, Bernard N, Wiener CG, Vogt BD and Becker ML
Hydrogels are used widely for exploratory tissue engineering studies. However, currently no hydrogel systems have been reported that exhibit a wide range of elastic modulus without changing precursor concentration, identity, or stoichiometry. Herein, ester and amide-based PEG-oxime hydrogels with tunable moduli (~5-30 kPa) were synthesized with identical precursor mass fraction, stoichiometry, and concentration by varying the pH and buffer concentration of the gelation solution, exploiting the kinetics of oxime bond formation. The observed modulus range can be attributed to increasing amounts of network defects in slower forming gels, as confirmed by equilibrium swelling and small angle neutron scattering (SANS) experiments. Finally, MSC viability was confirmed in these materials in a 24 h assay. While only an initial demonstration of the potential utility, the controlled variation in defect density and modulus is an important step forward in isolating system variables for hypothesis-driven biological investigations.