Biotechnology for Biofuels

Co‑cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates
Brown JL, Swift CL, Mondo SJ, Seppala S, Salamov A, Singan V, Henrissat B, Drula E, Henske JK, Lee S, LaButti K, He G, Yan M, Barry K, Grigoriev IV and O'Malley MA
Anaerobic fungi and methanogenic archaea are two classes of microorganisms found in the rumen microbiome that metabolically interact during lignocellulose breakdown. Here, stable synthetic co-cultures of the anaerobic fungus Caecomyces churrovis and the methanogen Methanobacterium bryantii (not native to the rumen) were formed, demonstrating that microbes from different environments can be paired based on metabolic ties. Transcriptional and metabolic changes induced by methanogen co-culture were evaluated in C. churrovis across a variety of substrates to identify mechanisms that impact biomass breakdown and sugar uptake. A high-quality genome of C. churrovis was obtained and annotated, which is the first sequenced genome of a non-rhizoid-forming anaerobic fungus. C. churrovis possess an abundance of CAZymes and carbohydrate binding modules and, in agreement with previous studies of early-diverging fungal lineages, N6-methyldeoxyadenine (6mA) was associated with transcriptionally active genes. Co-culture with the methanogen increased overall transcription of CAZymes, carbohydrate binding modules, and dockerin domains in co-cultures grown on both lignocellulose and cellulose and caused upregulation of genes coding associated enzymatic machinery including carbohydrate binding modules in family 18 and dockerin domains across multiple growth substrates relative to C. churrovis monoculture. Two other fungal strains grown on a reed canary grass substrate in co-culture with the same methanogen also exhibited high log2-fold change values for upregulation of genes encoding carbohydrate binding modules in families 1 and 18. Transcriptional upregulation indicated that co-culture of the C. churrovis strain with a methanogen may enhance pyruvate formate lyase (PFL) function for growth on xylan and fructose and production of bottleneck enzymes in sugar utilization pathways, further supporting the hypothesis that co-culture with a methanogen may enhance certain fungal metabolic functions. Upregulation of CBM18 may play a role in fungal-methanogen physical associations and fungal cell wall development and remodeling.
The advanced performance of microbial consortium for simultaneous utilization of glucose and xylose to produce lactic acid directly from dilute sulfuric acid pretreated corn stover
Sun Y, Li X, Wu L, Li Y, Li F, Xiu Z and Tong Y
Lignocellulosic feedstocks have attracted much attention as a potential carbon source for lactic acid (LA) production because of their ready availability, sustainability, and renewability. However, there are at least two major technical challenges to producing LA from lignocellulose. Inhibitors derived from lignocellulose pretreatment have a negative impact on the growth of cells producing LA. Furthermore, pentose sugars produced from the pretreatment are difficultly utilized by most LA producers, which is known as the carbon catabolite repression (CCR) effect. This complex feedstock can be utilized by a robust microbial consortium with high bioconversion efficiency.
Proteomic and biochemical responses to different concentrations of CO suggest the existence of multiple carbon metabolism strategies in Phaeodactylum tricornutum
Wu S, Gu W, Jia S, Wang L, Wang L, Liu X, Zhou L, Huang A and Wang G
Diatoms are well known for high photosynthetic efficiency and rapid growth rate, which are not only important oceanic primary producer, but also ideal feedstock for microalgae industrialization. Their high success is mainly due to the rapid response of photosynthesis to inorganic carbon fluctuations. Thus, an in-depth understanding of the photosynthetic carbon fixation mechanism of diatoms will be of great help to microalgae-based applications. This work directed toward the analysis of whether C4 photosynthetic pathway functions in the model marine diatom Phaeodactylum tricornutum, which possesses biophysical CO-concentrating mechanism (CCM) as well as metabolic enzymes potentially involved in C4 photosynthetic pathway.
Characterization and modulation of endoplasmic reticulum stress response target genes in Kluyveromyces marxianus to improve secretory expressions of heterologous proteins
Shi T, Zhou J, Xue A, Lu H, He Y and Yu Y
Kluyveromyces marxianus is a promising cell factory for producing bioethanol and that raised a demand for a high yield of heterologous proteins in this species. Expressions of heterologous proteins usually lead to the accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum (ER) and then cause ER stress. To cope with this problem, a group of ER stress response target genes (ESRTs) are induced, mainly through a signaling network called unfolded protein response (UPR). Characterization and modulation of ESRTs direct the optimization of heterologous expressions. However, ESRTs in K. marxianus have not been identified so far.
Construction of a tunable promoter library to optimize gene expression in Methylomonas sp. DH-1, a methanotroph, and its application to cadaverine production
Lee HM, Ren J, Yu MS, Kim H, Kim WY, Shen J, Yoo SM, Eyun SI and Na D
As methane is 84 times more potent than carbon dioxide in exacerbating the greenhouse effect, there is an increasing interest in the utilization of methanotrophic bacteria that can convert harmful methane into various value-added compounds. A recently isolated methanotroph, Methylomonas sp. DH-1, is a promising biofactory platform because of its relatively fast growth. However, the lack of genetic engineering tools hampers its wide use in the bioindustry.
Down-regulation of OsMYB103L distinctively alters beta-1,4-glucan polymerization and cellulose microfibers assembly for enhanced biomass enzymatic saccharification in rice
Wu L, Zhang M, Zhang R, Yu H, Wang H, Li J, Wang Y, Hu Z, Wang Y, Luo Z, Li L, Wang L, Peng L and Xia T
As a major component of plant cell walls, cellulose provides the most abundant biomass resource convertible for biofuels. Since cellulose crystallinity and polymerization have been characterized as two major features accounting for lignocellulose recalcitrance against biomass enzymatic saccharification, genetic engineering of cellulose biosynthesis is increasingly considered as a promising solution in bioenergy crops. Although several transcription factors have been identified to regulate cellulose biosynthesis and plant cell wall formation, much remains unknown about its potential roles for genetic improvement of lignocellulose recalcitrance.
Combinatorial use of environmental stresses and genetic engineering to increase ethanol titres in cyanobacteria
Andrews F, Faulkner M, Toogood HS and Scrutton NS
Current industrial bioethanol production by yeast through fermentation generates carbon dioxide. Carbon neutral bioethanol production by cyanobacteria uses biological fixation (photosynthesis) of carbon dioxide or other waste inorganic carbon sources, whilst being sustainable and renewable. The first ethanologenic cyanobacterial process was developed over two decades ago using Synechococcus elongatus PCC 7942, by incorporating the recombinant pdc and adh genes from Zymomonas mobilis. Further engineering has increased bioethanol titres 24-fold, yet current levels are far below what is required for industrial application. At the heart of the problem is that the rate of carbon fixation cannot be drastically accelerated and carbon partitioning towards bioethanol production impacts on cell fitness. Key progress has been achieved by increasing the precursor pyruvate levels intracellularly, upregulating synthetic genes and knocking out pathways competing for pyruvate. Studies have shown that cyanobacteria accumulate high proportions of carbon reserves that are mobilised under specific environmental stresses or through pathway engineering to increase ethanol production. When used in conjunction with specific genetic knockouts, they supply significantly more carbon for ethanol production. This review will discuss the progress in generating ethanologenic cyanobacteria through chassis engineering, and exploring the impact of environmental stresses on increasing carbon flux towards ethanol production.
Wood-feeding termite gut symbionts as an obscure yet promising source of novel manganese peroxidase-producing oleaginous yeasts intended for azo dye decolorization and biodiesel production
Al-Tohamy R, Sun J, Khalil MA, Kornaros M and Ali SS
The ability of oxidative enzyme-producing micro-organisms to efficiently valorize organic pollutants is critical in this context. Yeasts are promising enzyme producers with potential applications in waste management, while lipid accumulation offers significant bioenergy production opportunities. The aim of this study was to explore manganese peroxidase-producing oleaginous yeasts inhabiting the guts of wood-feeding termites for azo dye decolorization, tolerating lignocellulose degradation inhibitors, and biodiesel production.
Development of a consortium-based microbial agent beneficial to composting of distilled grain waste for Pleurotus ostreatus cultivation
Wu S, Zhou R, Ma Y, Fang Y, Xie G, Gao X, Xiao Y, Liu J and Fang Z
Pleurotus ostreatus is an edible mushroom popularly cultivated worldwide. Distilled grain waste (DGW) is a potential substrate for P. ostreatus cultivation. However, components in DGW restrict P. ostreatus mycelial growth. Therefore, a cost-effective approach to facilitate rapid P. ostreatus colonization on DGW substrate will benefit P. ostreatus cultivation and DGW recycling.
Protein acetylation regulates xylose metabolism during adaptation of Saccharomyces cerevisiae
Tan YS, Wang L, Wang YY, He QE, Liu ZH, Zhu Z, Song K, Li BZ and Yuan YJ
As the second most abundant polysaccharide in nature, hemicellulose can be degraded to xylose as the feedstock for bioconversion to fuels and chemicals. To enhance xylose conversion, the engineered Saccharomyces cerevisiae with xylose metabolic pathway is usually adapted with xylose as the carbon source in the laboratory. However, the mechanism under the adaptation phenomena of the engineered strain is still unclear.
Engineering Rhodosporidium toruloides for limonene production
Liu S, Zhang M, Ren Y, Jin G, Tao Y, Lyu L, Zhao ZK and Yang X
Limonene is a widely used monoterpene in the production of food, pharmaceuticals, biofuels, etc. The objective of this work was to engineer Rhodosporidium toruloides as a cell factory for the production of limonene.
Carbon catabolite repression involves physical interaction of the transcription factor CRE1/CreA and the Tup1-Cyc8 complex in Penicillium oxalicum and Trichoderma reesei
Hu Y, Li M, Liu Z, Song X, Qu Y and Qin Y
Cellulolytic enzyme production in filamentous fungi requires a release from carbon catabolite repression (CCR). The protein CRE1/CreA (CRE = catabolite responsive element) is a key transcription factor (TF) that is involved in CCR and represses cellulolytic gene expression. CRE1/CreA represents the functional equivalent of Mig1p, an important Saccharomyces cerevisiae TF in CCR that exerts its repressive effect by recruiting a corepressor complex Tup1p-Cyc8p. Although it is known from S. cerevisiae that CRE1/CreA might repress gene expression via interacting with the corepressor complex Tup1-Cyc8, this mechanism is unconfirmed in other filamentous fungi, since the physical interaction has not yet been verified in these organisms. The precise mechanism on how CRE1/CreA achieves transcriptional repression after DNA binding remains unknown.
Cocktail biosynthesis of triacylglycerol by rational modulation of diacylglycerol acyltransferases in industrial oleaginous Aurantiochytrium
Lan C, Wang S, Zhang H, Wang Z, Wan W, Liu H, Hu Y, Cui Q and Song X
Triacylglycerol (TAG) is an important storage lipid in organisms, depending on the degree of unsaturation of fatty acid molecules attached to glycerol; it is usually used as the feedstock for nutrition or biodiesel. However, the mechanism of assembly of saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) into TAGs remains unclear for industrial oleaginous microorganism.
Reactor microbiome enriches vegetable oil with n-caproate and n-caprylate for potential functionalized feed additive production via extractive lactate-based chain elongation
Contreras-Dávila CA, Zuidema N, Buisman CJN and Strik DPBTB
Biotechnological processes for efficient resource recovery from residual materials rely on complex conversions carried out by reactor microbiomes. Chain elongation microbiomes produce valuable medium-chain carboxylates (MCC) that can be used as biobased starting materials in the chemical, agriculture and food industry. In this study, sunflower oil is used as an application-compatible solvent to accumulate microbially produced MCC during extractive lactate-based chain elongation. The MCC-enriched solvent is harvested as a potential novel product for direct application without further MCC purification, e.g., direct use for animal nutrition. Sunflower oil biocompatibility, in situ extraction performance and effects on chain elongation were evaluated in batch and continuous experiments. Microbial community composition and dynamics of continuous experiments were analyzed based on 16S rRNA gene sequencing data. Potential applications of MCC-enriched solvents along with future research directions are discussed.
QTL mapping of a Brazilian bioethanol strain links the cell wall protein-encoding gene GAS1 to low pH tolerance in S. cerevisiae
Coradini ALV, da Silveira Bezerra de Mello F, Furlan M, Maneira C, Carazzolle MF, Pereira GAG and Teixeira GS
Saccharomyces cerevisiae is largely applied in many biotechnological processes, from traditional food and beverage industries to modern biofuel and biochemicals factories. During the fermentation process, yeast cells are usually challenged in different harsh conditions, which often impact productivity. Regarding bioethanol production, cell exposure to acidic environments is related to productivity loss on both first- and second-generation ethanol. In this scenario, indigenous strains traditionally used in fermentation stand out as a source of complex genetic architecture, mainly due to their highly robust background-including low pH tolerance.
Development and characterization of efficient xylose utilization strains of Zymomonas mobilis
Lou J, Wang J, Yang Y, Yang Q, Li R, Hu M, He Q, Du J, Wang X, Li M and Yang S
Efficient use of glucose and xylose is a key for the economic production of lignocellulosic biofuels and biochemicals, and different recombinant strains have been constructed for xylose utilization including those using Zymomonas mobilis as the host. However, the xylose utilization efficiency still needs to be improved. In this work, the strategy of combining metabolic engineering and adaptive laboratory evolution (ALE) was employed to develop recombinant Z. mobilis strains that can utilize xylose efficiently at high concentrations, and NGS-based genome resequencing and RNA-Seq transcriptomics were performed for strains evolved after serial transfers in different media to understand the impact of xylose and differences among strains with different xylose-utilization capabilities at molecular level.
Plastidial wax ester biosynthesis as a tool to synthesize shorter and more saturated wax esters
Vollheyde K, Hornung E, Herrfurth C, Ischebeck T and Feussner I
Wax esters (WE) are neutral lipids that consist of a fatty alcohol esterified to a fatty acid. WE are valuable feedstocks in industry for producing lubricants, coatings, and cosmetics. They can be produced chemically from fossil fuel or plant-derived triacylglycerol. As fossil fuel resources are finite, the synthesis of WE in transgenic plants may serve as an alternative source. As chain length and desaturation of the alcohol and acyl moieties determine the physicochemical properties of WE and their field of application, tightly controlled and tailor-made WE synthesis in plants would be a sustainable, beneficial, and valuable commodity. Here, we report the expression of ten combinations of WE producing transgenes in Arabidopsis thaliana. In order to study their suitability for WE production in planta, we analyzed WE amount and composition in the transgenic plants.
Transcriptome analysis of Rhizopus oryzae seed pellet formation using triethanolamine
Wu N, Zhang J, Ou W, Chen Y, Wang R, Li K, Sun XM, Li Y, Xu Q and Huang H
Rhizopus oryzae (R. oryzae) can effectively produce organic acids, and its pellet formation in seed cultures has been shown to significantly enhance subsequent fermentation processes. Despite advances in strain development, simple and effective methods for inducing pellet morphology and a basic understanding of the mechanisms controlling this process could facilitate substantial increases in efficiency and product output. Here, we report that 1.5% triethanolamine (TEOA) in seed culture medium can activate the growth of R. oryzae spores in compact and uniform pellets which is optimal for fermentation conditions. Analysis of fermentation kinetics showed that the production of fumaric and L-malic acid increases 293% and 177%, respectively. Transcriptomic analysis revealed that exposure of R. oryzae to 1.5% TEOA during the seed culture activated the phosphatidylinositol and mitogen-activated protein kinase signaling pathways. Theses pathways subsequently stimulated the downstream carbohydrate-active synthases and hydrolases that required for cell wall component synthesis and reconstruction. Our results thus provide insight into the regulatory pathways controlling pellet morphology germane to the viability of seed cultures, and provide valuable reference data for subsequent optimization of organic acid fermentation by R. oryzae.
Improved methanol tolerance of Rhizomucor miehei lipase based on N‑glycosylation within the α-helix region and its application in biodiesel production
Tian M, Yang L, Wang Z, Lv P, Fu J, Miao C, Li M, Liu T and Luo W
Liquid lipases are widely used to convert oil into biodiesel. Methanol-resistant lipases with high catalytic activity are the first choice for practical production. Rhizomucor miehei lipase (RML) is a single-chain α/β-type protein that is widely used in biodiesel preparation. Improving the catalytic activity and methanol tolerance of RML is necessary to realise the industrial production of biodiesel.
An emerging simple and effective approach to increase the productivity of thraustochytrids microbial lipids by regulating glycolysis process and triacylglycerols' decomposition
Ma W, Wang YZ, Nong FT, Du F, Xu YS, Huang PW and Sun XM
The oleaginous microorganism Schizochytrium sp. is widely used in scientific research and commercial lipid production processes. However, low glucose-to-lipid conversion rate (GLCR) and low lipid productivity of Schizochytrium sp. restrict the feasibility of its use.
Valorization of Chinese hickory shell as novel sources for the efficient production of xylooligosaccharides
Wang ZK, Huang C, Zhong JL, Wang Y, Tang L, Li B, Sheng JJ, Chen L, Sun S and Shen X
Chinese hickory shell, a by-product of the food industry, is still not utilized and urgent to develop sustainable technologies for its valorization. This research focuses on the systematical evaluation of degraded products and xylooligosaccharide production with high yield from the shell via hydrothermal process. The pretreatment was carried out in a bath pressurized reactor at 140-220 °C for 0.5-2 h. The results indicated that the pretreatment condition strongly affected the chemical structures and compositions of the liquid fraction. The maximum yield of XOS (55.3 wt%) with limitation of by-products formation was achieved at 160 °C for 2 h. High temperature (220 °C) and short time (0.5 h) contributed to hydrolysis of xylooligosaccharide with high DP to yield 37.5 wt% xylooligosaccharide with DP from 2 to 6. Xylooligosaccharide obtained mainly consisted of xylan with branches according to the HSQC NMR analysis. Overall, the production of XOS with a high yield from food waste will facilitate the valorization of food waste in the biorefinery industry.