Application of the coal mine floor rating (CMFR) to assess the floor stability in a Central Appalachian Coal Mine
Estimating the overall floor stability in a coal mine using deterministic methods which require complex engineering properties of floor strata is desirable, but generally it is impractical due to the difficulty of gathering essential input data. However, applying a quantitative methodology to describe floor quality with a single number provides a practical estimate for preliminary assessment of floor stability. The coal mine floor rating (CMFR) system, developed by the University of New South Wales (UNSW), is a rock-mass classification system that provides an indicator for the competence of floor strata. The most significant components of the CMFR are uniaxial compressive strength and discontinuity intensity of floor strata. In addition to the competence of the floor, depth of cover and stress notch angle are input parameters used to assess the preliminary floor stability. In this study, CMFR methodology was applied to a Central Appalachian Coal Mine that intermittently experienced floor heave. Exploratory drill core data, overburden maps, and mine plans were utilized for the study. Additionally, qualitative data (failure/non-failure) on floor conditions of the mine entries near the core holes was collected and analyzed so that the floor quality and its relation to entry stability could be estimated by statistical methods. It was found that the current CMFR classification system is not directly applicable in assessing the floor stability of the Central Appalachian Coal Mine. In order to extend the applicability of the CMFR classification system, the methodology was modified. A calculation procedure of one of the CMFR classification system's components, the horizontal stress rating (HSR), was changed and new parameters were added to the HSR.
The current perspective of the PA 1957 gas well pillar study and its implications for longwall gas well pillars
Many states rely upon the Pennsylvania 1957 Gas Well Pillar Study to evaluate the coal barrier surrounding gas wells. The study included 77 gas well failure cases that occurred in the Pittsburgh and Freeport coal seams over a 25-year span. At the time, coal was mined using the room-and-pillar mining method with full or partial pillar recovery, and square or rectangle pillars surrounding the gas wells were left to protect the wells. The study provided guidelines for pillar sizes under different overburden depths up to 213 m (700 ft). The 1957 study has also been used to determine gas well pillar sizes in longwall mines since longwall mining began in the 1970 s. The original study was developed for room-and-pillar mining and could be applied to gas wells in longwall chain pillars under shallow cover. However, under deep cover, severe deformations in gas wells have occurred in longwall chain pillars. Presently, with a better understanding of coal pillar mechanics, new insight into subsidence movements induced by retreat mining, and advances in numerical modeling, it has become both critically important and feasible to evaluate the adequacy of the 1957 study for longwall gas well pillars. In this paper, the data from the 1957 study is analyzed from a new perspective by considering various factors, including overburden depth, failure location, failure time, pillar safety factor (SF), and floor pressure. The pillar SF and floor pressure are calculated by considering abutment pressure induced by full pillar recovery. A statistical analysis is performed to find correlations between various factors and helps identify the most significant factors for the stability of gas wells influenced by retreat mining. Through analyzing the data from the 1957 study, the guidelines for gas well pillars in the 1957 study are evaluated for their adequacy for room-and-pillar mining and their applicability to longwall mining. Numerical modeling is used to model the stability of gas wells by quantifying the mining-induced stresses in gas well casings. Results of this study indicate that the guidelines in the 1957 study may be appropriate for pillars protecting conventional gas wells in both room-and-pillar mining and longwall mining under overburden depths up to 213 m (700 ft), but may not be sufficient for protective pillars under deep cover. The current evaluation of the 1957 study provides not only insights about potential gas well failures caused by retreat mining but also implications for what critical considerations should be taken into account to protect gas wells in longwall mining.
Coal mine entry rating system: A case study
Coal mines are continuously seeking to determine the performance of entries with different ground control products and installation methods. There are many factors that impact how an entry will perform which include but are not limited to geology, overburden, bolting type and pattern, and mine design. At the National Institute for Occupational Safety and Health (NIOSH), research has been instituted to examine the relationship of the parts of a coal mine entry as a system and not as individual components. To study this relationship, the first step in this study was to create a numeric rating system that accurately reflects visual observations of the mine entry and is easy to implement. NIOSH researchers devised this rating system to improve upon previous ideas, offering increased flexibility which can be incorporated into an overall entry condition that offers different levels of confidence based on the user's time devoted to the inspection. This new entry rating system was implemented at three different mines over varying periods of time to evaluate the ground response to the geology, bolt installation pattern, stress changes by mining, overburden, and time dependency.
Assessing support alternatives for longwall gateroads subject to changing stress
Longwall gateroad entries are subject to changing horizontal and vertical stress induced by redistribution of loads around the extracted panel. The stress changes can result in significant deformation of the entries that may include roof sag, rib dilation, and floor heave. Mine operators install different types of supports to control the ground response and maintain safe access and ventilation of the longwall face. This paper describes recent research aimed at quantifying the effect of longwall-induced stress changes on ground stability and using the information to assess support alternatives. The research included monitoring of ground and support interaction at several operating longwall mines in the U.S., analysis and calibration of numerical models that adequately represent the bedded rock mass, and observation of the support systems and their response to changes in stress. The models were then used to investigate the impact of geology and stress conditions on ground deformation and support response for various depths of cover and geologic scenarios. The research results were summarized in two regression equations that can be used to estimate the likely roof deformation and height of roof yield due to longwall-induced stress changes. This information is then used to assess the ability of support systems to maintain the stability of the roof. The application of the method is demonstrated with a retrospective analysis of the support performance at an operating longwall mine that experienced a headgate roof fall. The method is shown to produce realistic estimates of gateroad entry stability and support performance, allowing alternative support systems to be assessed during the design and planning stage of longwall operations.
A coal rib monitoring study in a room-and-pillar retreat mine
The National Institute for Occupational Safety and Health (NIOSH) conducted a comprehensive monitoring program in a room-and-pillar mine located in Southern Virginia. The deformation and the stress change in an instrumented pillar were monitored during the progress of pillar retreat mining at two sites of different geological conditions and depths of cover. The main objectives of the monitoring program were to better understand the stress transfer and load shedding on coal pillars and to quantify the rib deformation due to pillar retreat mining; and to examine the effect of rib geology and overburden depth on coal rib performance. The instrumentation at both sites included pull-out tests to measure the anchorage capacity of rib bolts, load cells mounted on rib bolts to monitor the induced loads in the bolts, borehole pressure cells (BPCs) installed at various depths in the study pillar to measure the change in vertical pressure within the pillar, and roof and rib extensometers installed to quantify the vertical displacement of the roof and the horizontal displacement of the rib that would occur during the retreat mining process. The outcome from the monitoring program provides insight into coal pillar rib support optimization at various depths and geological conditions. Also, this study contributes to the NIOSH rib support database in U.S coal mines and provides essential data for rib support design.
Transport model for shale gas well leakage through the surrounding fractured zones of a longwall mine
The environmental risks associated with casing deformation in unconventional (shale) gas wells positioned in abutment pillars of longwall mines is a concern to many in the mining and gas well industry. With the recent interest in shale exploration and the proximity to longwall mining in Southwestern Pennsylvania, the risk to mine workers could be catastrophic as fractures in surrounding strata create pathways for transport of leaked gases. Hence, this research by the National Institute for Occupational Safety and Health (NIOSH) presents an analytical model of the gas transport through fractures in a low permeable stratum. The derived equations are used to conduct parametric studies of specific transport conditions to understand the influence of stratum geology, fracture lengths, and the leaked gas properties on subsurface transport. The results indicated that the prediction that the subsurface gas flux decreases with an increase in fracture length is specifically for a non-gassy stratum. The sub-transport trend could be significantly impacted by the stratum gas generation rate within specific fracture lengths, which emphasized the importance of the stratum geology. These findings provide new insights for improved understanding of subsurface gas transport to ensure mine safety.
Design of a water curtain to reduce accumulations of float coal dust in longwall returns
Accumulation of float coal dust (FCD) in underground mines is an explosion hazard that affects all underground coal mine workers. While this hazard is addressed by the application of rock dust, inadequate rock dusting practices can leave miners exposed to an explosion risk. Researchers at the National Institute for Occupational Safety and Health (NIOSH) have focused on developing a water curtain that removes FCD from the airstream, thereby reducing the buildup of FCD in mine airways. In this study, the number and spacing of the active sprays in the water curtain were varied to determine the optimal configuration to obtain peak knockdown efficiency (KE) while minimizing water consumption.
Diesel and welding aerosols in an underground mine
Researchers from the National Institute for Occupational Safety and Health (NIOSH) conducted a study in an isolated zone of an underground mine to characterize aerosols generated by: (1) a diesel-powered personnel carrier vehicle operated over a simulated light-duty cycle and (2) the simulated repair of existing equipment using manual metal arc welding (MMAW). Both the diesel-powered vehicle and MMAW process contributed to concentrations of nano and ultrafine aerosols in the mine air. The welding process also contributed to aerosols with electrical mobility and aerodynamic mobility count median diameters of approximately 140 and 480 nm, respectively. The welding particles collected on the filters contained carbon, iron, manganese, calcium, and aluminum.
Geologic data collection and assessment techniques in coal mining for ground control
The identification and mitigation of adverse geologic conditions are critical to the safety and productivity of underground coal mining operations. To anticipate and mitigate adverse geologic conditions, a formal method to evaluate geotechnical factors must be established. Each mine is unique and has its own separate approach for defining what an adverse geological condition consists of. The collection of geologic data is a first critical step to creating a geological database to map these hazards efficiently and effectively. Many considerations must be taken into account, such as lithology of immediate roof and floor strata, seam height, gas and oil wells, faults, depressions in the mine floor (water) and increases in floor elevation (gas), overburden, streams and horizontal stress directions, amongst many other factors. Once geologic data is collected, it can be refined and integrated into a database that can be used to develop maps showing the trend, orientation, and extent of the adverse geological conditions. This information, delivered in a timely manner, allows mining personnel to be proactive in mine planning and support implementations, ultimately reducing the impacts of these features. This paper covers geologic exploratory methods, data organization, and the value of collecting and interpreting geologic information in coal mines to enhance safety and production. The implementation of the methods described above has been proven effective in predicting and mitigating adverse geologic conditions in underground coal mining. Consistent re-evaluation of data collection methods, geologic interpretations, mapping procedures, and communication techniques ensures continuous improvement in the accuracy of predictions and mitigation of adverse geologic conditions. Providing a concise record of the work previously done to track geologic conditions at a mine will allow for the smoothest transition during employee turnover and transitions. With refinements and standardization of data collection methods, such as those described in this paper, along with improvement in technology, the evaluation of adverse geologic conditions will evolve and continue to improve the safety and productivity of underground coal mining.
Analysis of ARMPS2010 database with LaModel and an updated abutment angle equation
The Analysis of Retreat Mining Pillar Stability (ARMPS) program was developed by the National Institute for Occupational Safety and Health (NIOSH) to help the United States coal mining industry to design safe retreat room-and-pillar panels. ARMPS calculates the magnitude of the in-situ and mining-induced loads by using geometrical computations and empirical rules. In particular, the program uses the "abutment angle" concept in calculating the magnitude of the abutment load on pillars adjacent to a gob. In this paper, stress measurements from United States and Australian mines with different overburden geologies with varying hard rock percentages were back analyzed. The results of the analyses indicated that for depths less than 200 m, the ARMPS empirical derivation of a 21° abutment angle was supported by the case histories; however, at depths greater than 200 m, the abutment angle was found to be significantly less than 21°. In this paper, a new equation employing the panel width to overburden depth ratio is constructed for the calculation of accurate abutment angles for deeper mining cases. The new abutment angle equation was tested using both ARMPS2010 and LaModel for the entire case history database of ARMPS2010. The new abutment angle equation to estimate the magnitude of the mining-induced loads used together with the LaModel program was found to give good classification accuracies compared to ARMPS2010 for deep cover cases.
Evaluation of stress-control layout at the Subtropolis Mine, Petersburg, Ohio
The Subtropolis room-and-pillar mine extracts the Vanport Limestone (Allegheny Formation, Pennsylvanian System) near Petersburg, Ohio. Strata instability problems associated with excessive concentrations of lateral stress caused the mine operator to implement a change in layout design. This mining method has been identified as a stress control layout and has been used by other underground stone mines in the past with varying degrees of success. Practical experience has shown that entry headings advance in the direction of the principal lateral stress, producing lower stress concentrations with better mining conditions. It is important to minimize stress concentrations along the mining front, so an arrow-shaped advance is recommended. This technique advances more developments (headings) in a "good" direction and reduces developments (crosscuts) in the "bad direction." As is expected, the stress control layout enhances the potential for shear failures in crosscuts. It is, therefore, important to focus crosscut engineering interventions that either: (a) lower stress concentrations (for example, an arched roof) or (b) enhance strength of the strata containing the shears (for example, rock reinforcement). This study focuses on observing strata conditions on a regular basis and monitoring the response of these strata to changing geologic and mining conditions through 3D Dynamic LiDAR scans.
Exploration of petrographic, elemental, and material properties of dynamic failure-prone coals
The purpose of this study is to explore how the geochemical and petrographic components of coal may impact its physical properties and how these correlate with a history of reportable dynamic failure in coal mines. Dynamic failure events, also termed bumps, bounces, or bursts, are the explosive failures of rock in a mining environment. These events occur suddenly and often with no warning, resulting in worker injury up to and including fatality in greater than 60% of reportable cases through the Mine Safety and Health Administration (MSHA). A database of variables was compiled using publicly available datasets, which includes compositional geographic, strength, and Hardgrove grindability index (HGI) data. Results indicated that bumping coals were less mature, lower in carbon, higher in oxygen, softer, and less well cleated than coals that did not bump. High liptinite content was found to correlate with higher average uniaxial compressive strength (UCS) values. However, no clear and direct correlation between UCS and dynamic failure status was observed. The findings of this study established that differences existed between coals that had versus had not experienced reportable dynamic failure accidents. These differences were inherent to the coal itself and were independent of mining-induced risk factors. Results further illuminated how compositional attribute of coal influenced physical properties and began to clarify potential links between geochemistry and dynamic failure status. Only through the better understanding of risk can more effective mitigating strategies be enacted.
A case study of the stability of a non-typical bleeder entry system at a U.S. longwall mine
Longwall abutment loads are influenced by several factors, including depth of cover, pillar sizes, panel dimensions, geological setting, mining height, proximity to gob, intersection type, and size of the gob. How does proximity to the gob affect pillar loading and entry condition? Does the gob influence depend on whether the abutment load is a forward, side, or rear loading? Do non-typical bleeder entry systems follow the traditional front and side abutment loading and extent concepts? If not, will an improved understanding of the combined abutment extent warrant a change in pillar design or standing support in bleeder entries? This paper details observations made in the non-typical bleeder entries of a moderate depth longwall panel-specifically, data collected from borehole pressure cells and roof extensometers, observations of the conditions of the entries, and numerical modeling of the bleeder entries during longwall extraction. The primary focus was on the extent and magnitude of the abutment loading experienced due to the extraction of the longwall panels. Due to the layout of the longwall panels and bleeder entries, the borehole pressure cells (BPCs) and roof extensometers did not show much change due to the advancing of the first longwall. However, they did show a noticeable increase due to the second longwall advancement, with a maximum of about 4 MPa of pressure increase and 5 mm of roof deformation. The observations of the conditions showed little to no change from before the first longwall panel extraction began to when the second longwall panel had been advanced more than 915 m. Localized pillar spalling was observed on the corners of the pillars closest to the longwall gob as well as an increase in water in the entries. In addition to the observations and instrumentation, numerical modeling was performed to validate modeling procedures against the monitoring results and evaluate the bleeder design. ITASCA Consulting Group's FLAC3D numerical modeling software was used to evaluate the bleeder entries. The results of the models indicated only a minor increase in load during the extraction of the longwall panels. These models showed a much greater increase in stress due to the development of the gateroad and bleeder entries--about 80% development and 20% longwall extraction. The FLAC3D model showed very good correlation between modeled and expected gateroad loading during panel extraction. The front and side abutment extent modeled was very similar to observations from this and previous panels.
Floor dust erosion during early stages of coal dust explosion development
An ignition of methane and air can generate enough air flow to raise mixtures of combustible coal and rock dust. The expanding high temperature combustion products ignite the suspended dust mixture and will continue to propagate following the available combustible fuel supply. If the concentration of the dispersed rock dust is sufficient, the flame will stop propagating. Large-scale explosion tests were conducted within the National Institute for Occupational Safety and Health (NIOSH) Lake Lynn Experimental Mine (LLEM) to measure the dynamic pressure history and the post-explosion dust scour depth. The aim of this effort is to provide quantitative data on depth of dust removal during the early stages of explosion development and its relationship to the depth of floor dust collected for assessing the incombustible content most likely to participate in the combustion process. This experimental work on dust removal on is not only important for coal mine safety but also for industrial dust explosions.
A field study of a roof bolter canopy air curtain (2nd generation) for respirable coal mine dust control
A 2nd generation roof bolter canopy air curtain (CAC) design was tested by National Institute for Occupational Safety and Health (NIOSH) at a Midwestern underground coal mine. During the study, the roof bolter never operated downwind of the continuous miner. Using a combination of personal Data Rams (pDR) and gravimetric samplers, the dust control efficiency of the roof bolter CAC was ascertained. Performance evaluation was determined using three methods: (1) comparing roof bolter operator concentrations underneath the CAC to roof bolter concentrations outside the CAC, (2) comparing roof bolter operator concentrations underneath the CAC to the concentrations at the rear of the bolter, and finally, (3) using the gravimetric data directly underneath the CAC to correct roof bolter operator concentrations underneath the CAC and comparing them to the concentrations at the rear of the bolter. Method 1 dust control efficiencies ranged from -53.9% to 60.4%. Method 2 efficiencies ranged from -150.5% to 52.2%, and Method 3 efficiencies ranged from 40.7% to 91%. Reasons for negative and low dust control efficiencies are provided in this paper and include: incorrect sampling locations, large distance between CAC and operator, and contamination of intake air from line curtain. Low dust concentrations encountered during the testing made it difficult to discern whether differences in concentrations were due to the CAC or due to variances inherent in experimental dust measurement. However, the analyses, especially the Method 3 analysis, show that the CAC can be an effective dust control device.
A test method for evaluating the thermal environment of underground coal mine refuge alternatives
Since 2009, the Mine Safety and Health Administration (MSHA) has required mines to install refuge alternatives (RAs) in underground coal mines. One of the biggest concerns with occupied RAs is the possible severity of the resulting thermal environment. In 30 CFR 7.504, the maximum allowable apparent temperature (AT) for an occupied RA is specified as 35 °C (95 °F). Manufacturers must conduct heat/humidity tests to demonstrate that their RAs meet the 35 °C (95 °F) AT limit. For these tests, heat input devices are used to input the metabolic heat of actual miners. A wide variety of test methods, sensors, and heat input devices could be used when conducting such tests. Since 2012, the National Institute for Occupational Safety and Health (NIOSH) has conducted over thirty 96-hour heat/humidity tests on four different RAs. This paper discusses the test equipment and procedures used during these investigations. This information is useful for RA manufacturers conducting RA heat/humidity tests, for other researchers investigating RA heat/humidity buildup, and for those who need to assess the thermal environment of any confined space where people may be trapped or are seeking refuge.
Using self-determination theory to identify organizational interventions to support coal mineworkers' dust-reducing practices
Advancing the application of safety and health (S&H) technologies is likely to remain a value in the mining industry. However, any information that technologies generate must be translated from the organization to the workforce in a targeted way to result in sustainable change. Using a case study approach with continuous personal dust monitors (CPDMs), this paper argues for an organizational focus on technology integration. Although CPDMs provide mineworkers with near real-time feedback about their respirable coal dust exposure, they do not ensure that workers or the organization will continuously use the information to learn about and reduce exposure sources. This study used self-determination theory (SDT) to help three mines manage and communicate about information learned from the CPDM technology. Specifically, 35 mineworkers participated in two mixed-method data collection efforts to discuss why they do or do not use CPDMs to engage in dust-reducing practices. Subsequently, the data was analyzed to better understand how organizations can improve the integration of technology through their management systems. Results indicate that using the CPDM to reduce sources of dust exposure is consistent with mineworkers' self-values to protect their health and not necessarily because of compliance to a manager or mine.
Influence of longwall mining on the stability of gas wells in chain pillars
Longwall mining has a significant influence on gas wells located within longwall chain pillars. Subsurface subsidence and abutment pressure induced by longwall mining can cause excessive stresses and deformations in gas well casings. If the gas well casings are compromised or ruptured, natural gas could migrate into the mine workings, potentially causing a fire or explosion. By the current safety regulations, the gas wells in the chain pillars have to be either plugged or protected by adequate coal pillars. The current regulations for gas well pillar design are based on the 1957 Pennsylvania gas well pillar study. The study provided guidelines for gas well pillars by considering their support area and overburden depth as well as the location of the gas wells within the pillars. As the guidelines were developed for room-and pillar mining under shallow cover, they are no longer applicable to modern longwall coal mining, particularly, under deep cover. Gas well casing of failures have occurred even though the chain pillars for the gas wells met the requirements by the 1957 study. This study, conducted by the National Institute for Occupational Safety and Health (NIOSH), presents seven cases of conventional gas wells penetrating through longwall chain pillars in the Pittsburgh Coal Seam. The study results indicate that overburden depth and pillar size are not the only determining factors for gas well stability. The other important factors include subsurface ground movement, overburden geology, weak floor, as well as the type of the construction of gas wells. Numerical modeling was used to model abutment pressure, subsurface deformations, and the response of gas well casings. The study demonstrated that numerical models are able to predict with reasonable accuracy the subsurface deformations in the overburden above, within, and below the chain pillars, and the potential location and modes of gas well failures, thereby providing a more quantifiable approach to assess the stability of the gas wells in longwall chain pillars.
Loading characteristics of mechanical rib bolts determined through testing and numerical modeling
Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs. Limited research has been conducted to understand the performance of the mechanical bolts in coal ribs. Researchers from the National Institute for Occupational Safety and Health (NIOSH) conducted this work to understand the loading characteristics of mechanical bolts (stiffness and capacity) installed in coal ribs at five underground coal mines. Standard pull-out tests were performed in this study to define the loading characteristics of mechanical rib bolts. Different installation torques were applied to the tested bolts based on the strength of the coal seam. A typical tri-linear load-deformation response for mechanical bolts was obtained from these tests. It was found that the anchorage capacity depended mainly on the coal strength. Guidelines for modeling mechanical bolts have been developed using the tri-linear load-deformation response. The outcome of this research provides essential data for rib support design.
Numerical simulation of roof cavings in several Kuzbass mines using finite-difference continuum damage mechanics approach
An essential stage of mine design is an estimation of the steps of the first and periodic roof caving in longwall mines. Generally, this is carried out using the field experience and can be much enhanced by numerical simulation. In this work, the finite-difference method was applied coupled with the continuum damage mechanics (CDM) approach to simulate the stress-strain evolution of the rock mass with the underground opening during coal extraction. The steps and stages of roof caving were estimated relying on the numerical simulation data, and they were compared with the field data from several operating mines in the south of the Kuznetsk Basin, Russia. The dependence of the first roof caving step in simulation linearly correlates with field data. The results correspond to the actual roofs of longwall panels of the flat-dipping coal seams and the average rate of face advancement is approximately 5 m/day.
Laboratory investigation of the anisotropic confinement-dependent brittle-ductile transition of a Utah coal
This paper was developed as part of an effort by the National Institute for Occupational Safety and Health (NIOSH) to identify risk factors associated with bumps in the prevention of fatalities and accidents in highly stressed, bump-prone ground conditions. Changes of failure mechanism with increasing confinement, from extensional-to shear-dominated failure, are widely observed in the rupture of intact specimens at the laboratory scale and in rock masses. In the previous analysis conducted in 2018, both unconfined and triaxial compressive tests were conducted to investigate the strength characteristics of some specimens of a Utah coal, including the spalling limits, the ratio of apparent unconfined compressive strength (AUCS) to unconfined compressive strength (UCS), the damage characteristics, and the post-yield dilatancy. These mechanical characteristics were found to be strongly anisotropic as a function of the orientation of the cleats relative to the loading direction. However, the transition from extensional to shear failure at the given confinements was not clearly identified. In this study, a total of 20 specimens were additionally prepared from the same coal sample used in the previous study and then tested under both unconfined and triaxial compressive conditions. The different confining stresses are used as analogs for different width-to-height (W/H) ratios of pillar strength. Although the W/H ratios of the specimens were not directly considered during testing, the equivalent W/H ratios of a pillar as a function of the confining stresses were estimated using an existing empirical solution. According to this relationship, the W/H at which in-situ pillar behavior would be expected to transition from brittle to ductile is identified.