Effective Prediction of Drug Transport in a Partially Liquefied Vitreous Humor: Physics-informed Neural Network Modeling for Irregular Liquefaction Geometry
As the medium for intravitreal drug delivery, the vitreous body can significantly influence drug delivery because of various possible liquefaction geometries. This work innovatively proposes a varying-porosity approach that is capable of solving the pressure and velocity fields in the heterogeneous vitreous with randomly-shaped liquefaction geometry, validated with a finite difference model. Doing so enables patient-specific treatment for intravitreal drug delivery and can significantly improve treatment efficacy. A physics-informed neural network (PINN) model is also established for the simulation, and three cases are used for validation. Despite limited information, the PINN model, together with the varying-porosity approach, captured fluid and drug transport in the partially liquefied vitreous. This opens the possibility for optimizing intravitreal drug delivery based on ultrasonography in clinical practice.
Topological Persistence Guided Knowledge Distillation for Wearable Sensor Data
Deep learning methods have achieved a lot of success in various applications involving converting wearable sensor data to actionable health insights. A common application areas is activity recognition, where deep-learning methods still suffer from limitations such as sensitivity to signal quality, sensor characteristic variations, and variability between subjects. To mitigate these issues, robust features obtained by topological data analysis (TDA) have been suggested as a potential solution. However, there are two significant obstacles to using topological features in deep learning: (1) large computational load to extract topological features using TDA, and (2) different signal representations obtained from deep learning and TDA which makes fusion difficult. In this paper, to enable integration of the strengths of topological methods in deep-learning for time-series data, we propose to use two teacher networks - one trained on the raw time-series data, and another trained on persistence images generated by TDA methods. These two teachers are jointly used to distill a single student model, which utilizes only the raw time-series data at test-time. This approach addresses both issues. The use of KD with multiple teachers utilizes complementary information, and results in a compact model with strong supervisory features and an integrated richer representation. To assimilate desirable information from different modalities, we design new constraints, including orthogonality imposed on feature correlation maps for improving feature expressiveness and allowing the student to easily learn from the teacher. Also, we apply an annealing strategy in KD for fast saturation and better accommodation from different features, while the knowledge gap between the teachers and student is reduced. Finally, a robust student model is distilled, which can at test-time uses only the time-series data as an input, while implicitly preserving topological features. The experimental results demonstrate the effectiveness of the proposed method on wearable sensor data. The proposed method shows 71.74% in classification accuracy on GENEActiv with WRN16-1 (1D CNNs) student, which outperforms baselines and takes much less processing time (less than 17 sec) than teachers on 6k testing samples.
Designing a new sustainable Test Kit supply chain network utilizing Internet of Things
The advent of COVID-19 put much economic pressure on countries worldwide, especially low-income countries. Providing test kits for Covid-19 posed a huge challenge at the beginning of the pandemic. Especially the low-income and less developed countries that did not have the technology to produce this kit and had to import it into the country, which itself cost a lot to buy and distribute these kits. This paper proposes a sustainable COVID-19 test kits supply chain network (STKSCN) for the first time to fill this gap. Distribution and transportation of test kits, location of distribution centers, and management of used test kits are considered in this network. A mixed integer linear programming Multi-Objective (MO), multi-period, multi-resource mathematical model is extended for the proposed supply chain. Another contribution is designing a platform based on the Internet of Things (IoT) to increase the speed, accuracy and security of the network. In this way, patients set their appointment online by registering their personal details and clinical symptoms. An augmented -constraint2 (AUGMECON2) is proposed for solving small and medium size of problem. Also, two meta-heuristic algorithms, namely NSGA-II and PESA-II are presented to solve the small, medium and large size of the problem. Taguchi method is utilized to control the parameters, and for comparison between meta-heuristic, five performance metrics are suggested. In addition, a case study in Iran is presented to validate the proposed model. Finally, the results show that PESA-II is more efficient and has better performance than the others based on assessment metrics and computational time.
Feature-based deep neural network approach for predicting mortality risk in patients with COVID-19
In this study, we integrate deep neural network (DNN) with hybrid approaches (feature selection and instance clustering) to build prediction models for predicting mortality risk in patients with COVID-19. Besides, we use cross-validation methods to evaluate the performance of these prediction models, including feature based DNN, cluster-based DNN, DNN, and neural network (multi-layer perceptron). The COVID-19 dataset with 12,020 instances and 10 cross-validation methods are used to evaluate the prediction models. The experimental results showed that the proposed feature based DNN model, holding Recall (98.62%), F1-score (91.99%), Accuracy (91.41%), and False Negative Rate (1.38%), outperforms than original prediction model (neural network) in the prediction performance. Furthermore, the proposed approach uses the Top 5 features to build a DNN prediction model with high prediction performance, exhibiting the well prediction as the model built by all features (57 features). The novelty of this study is that we integrate feature selection, instance clustering, and DNN techniques to improve prediction performance. Moreover, the proposed approach which is built with fewer features performs much better than the original prediction models in many metrics and can still remain high prediction performance.
COVID-19 symptom identification using Deep Learning and hardware emulated systems
The COVID-19 pandemic disrupted regular global activities in every possible way. This pandemic, caused by the transmission of the infectious Coronavirus, is characterized by main symptoms such as fever, fatigue, cough, and loss of smell. A current key focus of the scientific community is to develop automated methods that can effectively identify COVID-19 patients and are also adaptable for foreseen future virus outbreaks. To classify COVID-19 suspects, it is required to use contactless automatic measurements of more than one symptom. This study explores the effectiveness of using Deep Learning combined with a hardware-emulated system to identify COVID-19 patients in Sri Lanka based on two main symptoms: cough and shortness of breath. To achieve this, a Convolutional Neural Network (CNN) based on Transfer Learning was employed to analyze and compare the features of a COVID-19 cough with other types of coughs. Real-time video footage was captured using a FLIR C2 thermal camera and a web camera and subsequently processed using OpenCV image processing algorithms. The objective was to detect the nasal cavities in the video frames and measure the breath cycles per minute, thereby identifying instances of shortness of breath. The proposed method was first tested on crowd-sourced datasets (Coswara, Coughvid, ESC-50, and a dataset from Kaggle) obtained online. It was then applied and verified using a dataset obtained from local hospitals in Sri Lanka. The accuracy of the developed methodologies in diagnosing cough resemblance and recognizing shortness of breath was found to be 94% and 95%, respectively.
Improved LSTM-based deep learning model for COVID-19 prediction using optimized approach
Individuals in any country are badly impacted both economically and physically whenever an epidemic of infectious illnesses breaks out. A novel coronavirus strain was responsible for the outbreak of the coronavirus sickness in 2019. Corona Virus Disease 2019 (COVID-19) is the name that the World Health Organization (WHO) officially gave to the pneumonia that was caused by the novel coronavirus on February 11, 2020. The use of models that are informed by machine learning is currently a major focus of study in the field of improved forecasting. By displaying annual trends, forecasting models can be of use in performing impact assessments of potential outcomes. In this paper, proposed forecast models consisting of time series models such as long short-term memory (LSTM), bidirectional long short-term memory (Bi-LSTM), generalized regression unit (GRU), and dense-LSTM have been evaluated for time series prediction of confirmed cases, deaths, and recoveries in 12 major countries that have been affected by COVID-19. Tensorflow1.0 was used for programming. Indices known as mean absolute error (MAE), root means square error (RMSE), Median Absolute Error (MEDAE) and r2 score are utilized in the process of evaluating the performance of models. We presented various ways to time-series forecasting by making use of LSTM models (LSTM, BiLSTM), and we compared these proposed methods to other machine learning models to evaluate the performance of the models. Our study suggests that LSTM based models are among the most advanced models to forecast time series data.
PCovNet+: A CNN-VAE anomaly detection framework with LSTM embeddings for smartwatch-based COVID-19 detection
The world is slowly recovering from the Coronavirus disease 2019 (COVID-19) pandemic; however, humanity has experienced one of its According to work by Mishra et al. (2020), the study's first phase included a cohort of 5,262 subjects, with 3,325 Fitbit users constituting the majority. However, among this large cohort of 5,262 subjects, most significant trials in modern times only to learn about its lack of preparedness in the face of a highly contagious pathogen. To better prepare the world for any new mutation of the same pathogen or the newer ones, technological development in the healthcare system is a must. Hence, in this work, PCovNet+, a deep learning framework, was proposed for smartwatches and fitness trackers to monitor the user's Resting Heart Rate (RHR) for the infection-induced anomaly. A convolutional neural network (CNN)-based variational autoencoder (VAE) architecture was used as the primary model along with a long short-term memory (LSTM) network to create latent space embeddings for the VAE. Moreover, the framework employed pre-training using normal data from healthy subjects to circumvent the data shortage problem in the personalized models. This framework was validated on a dataset of 68 COVID-19-infected subjects, resulting in anomalous RHR detection with precision, recall, F-beta, and F-1 score of 0.993, 0.534, 0.9849, and 0.6932, respectively, which is a significant improvement compared to the literature. Furthermore, the PCovNet+ framework successfully detected COVID-19 infection for 74% of the subjects (47% presymptomatic and 27% post-symptomatic detection). The results prove the usability of such a system as a secondary diagnostic tool enabling continuous health monitoring and contact tracing.
A new hybrid prediction model of COVID-19 daily new case data
With the emergence of new mutant corona virus disease 2019 (COVID-19) strains such as Delta and Omicron, the number of infected people in various countries has reached a new high. Accurate prediction of the number of infected people is of far-reaching sig Nificance to epidemiological prevention in all countries of the world. In order to improve the prediction accuracy of COVID-19 daily new case data, a new hybrid prediction model of COVID-19 is proposed, which consists of four modules: decomposition, complexity judgment, prediction and error correction. Firstly, singular spectrum decomposition is used to decompose the COVID-19 data into singular spectrum components (SSC). Secondly, the complexity judgment is innovatively divided into high-complexity SSC and low-complexity SSC by neural network estimation time entropy. Thirdly, an improved LSSVM by GODLIKE optimization algorithm, named GLSSVM, is proposed to improve its prediction accuracy. Then, each low-complexity SSC is predicted by ARIMA, and each high-complexity SSC is predicted by GLSSVM, and the prediction error of each high-complexity SSC is predicted by GLSSVM. Finally, the predicted results are combined and reconstructed. Simulation experiments in Japan, Germany and Russia show that the proposed model has the highest prediction accuracy and the lowest prediction error. Diebold Mariano (DM) test is introduced to evaluate the model comprehensively. Taking Japan as an example, compared with ARIMA prediction model, the RMSE, average error and MAPE of the proposed model are reduced by 93.17%, 91.42% and 81.20% respectively.
Selection of healthcare waste management treatment using fuzzy rough numbers and Aczel-Alsina Function
The COVID-19 pandemic led to an increase in healthcare waste (HCW). HCW management treatment needs to be re-taken into focus to deal with this challenge. In practice, there are several treatments of HCW with their advantages and disadvantages. This study is conducted to select the appropriate treatment for HCW in the Brčko District of Bosnia and Herzegovina. Six HCW management treatments are analyzed and observed through twelve criteria. Ten-level linguistic values were used to bring this evaluation closer to human thinking. A fuzzy rough approach is used to solve the problem of inaccuracy in determining these values. The OPA method from the Bonferroni operator is used to determine the weights of the criteria. The results of the application of this method showed that the criterion Environmental Impact ( ) received the highest weight, while the criterion Automation Level ( ) received the lowest value. The ranking of HCW management treatments was performed using MARCOS methods based on the Aczel-Alsina function. The results of this analysis showed that the best-ranked HCW management treatment is microwave (A6) while landfill treatment (A5) is ranked worst. This study has provided a new approach based on fuzzy rough numbers where the Bonferroni function is used to determine the lower and upper limits, while the application of the Aczel-Alsina function reduced the influence of decision-makers on the final decision because this function stabilizes the decision-making process.
The IoT-enabled sustainable reverse supply chain for COVID-19 Pandemic Wastes (CPW)
Supply chains have been impacted by the COVID-19 pandemic, which is the most recent worldwide disaster. After the world health organization recognized the latest phenomena as a pandemic, nations became incapacitated to provide the required medical supplies. In the current situation, the world seeks an essential solution for COVID-19 Pandemic Wastes (CPWs) by pushing the pandemic to a stable condition. In this study, the development of a supply chain network is contrived for CPWs utilizing optimization modeling tools. Also, an IoT platform is devised to enable the proposed model to retrieve real-time data from IoT devices and set them as the model's inputs. Moreover, sustainability aspects are appended to the proposed IoT-enabled model considering its triplet pillars as objective functions. A real case of Puebla city and 15 experiments are used to validate the model. Furthermore, a combination of metaheuristic algorithms utilized to solve the model and also seven evaluation indicators endorse the selection of efficient solution approaches. The evaluation indicators are appointed as the inputs of statistical and multicriteria decision-making hybridization to prioritize the algorithms. The result of the Entropy Weights method and Combined Compromise Solution approach confirms that MOGWO has better performance for the medium-sizes, case study and an overall view. Also, NSHHO outclasses the small-size and large-size experiments.
Vaccine selection for COVID-19 by AHP and novel VIKOR hybrid approach with interval type-2 fuzzy sets
Decisions in the health industry have a significant impact on human lives. With the COVID-19 pandemic, a global war is being waged. Vaccination is a critical component in this fight. The governments are attempting to offer their citizens the best vaccine for the public based on limitations. However, due to the unique characterizations of countries and the people who live in the country, the definition of "the ideal vaccination" is indefinite. Fuzzy set theory has been an ideal tool to cope with problems involving imprecise information such as the meaning of "ideal" in this case. In this study Interval Type-2 Fuzzy Sets (IT2FSs) will be used to describe uncertainty. This IT2FS structure will be the framework of the AHP (Analytic Hierarchy Process), to determine the criteria weights, and the VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje), to generate a set of optimal choices. The main objective of this study is to sustain the necessary effect of uncertainty of fuzzy sets via the Interval Type-2 Fuzzy (IT2F) metric to the VIKOR method and thus propose an extended VIKOR. The presented new approach will be applied to the problem of vaccine selection for COVID-19. Hence, for the first time in the literature, an application with a multilevel hierarchy will be used in IT2FAHP-VIKOR. Also, obtained optimal solution set with this hybrid framework will be compared with fuzzy AHP-VIKOR and the rankings evaluated with the IT2FTOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and sensitivity analysis will be performed.
Prognosticating various acute covid lung disorders from COVID-19 patient using chest CT Images
The global spread of coronavirus illness has surged dramatically, resulting in a catastrophic pandemic situation. Despite this, accurate screening remains a significant challenge due to difficulties in categorizing infection regions and the minuscule difference between typical pneumonia and COVID (Coronavirus Disease) pneumonia. Diagnosing COVID-19 using the Mask Regional-Convolutional Neural Network (Mask R-CNN) is proposed to classify the chest computerized tomographic (CT) images into COVID-positive and COVID-negative. Covid-19 has a direct effect on the lungs, causing damage to the alveoli, which leads to various lung complications. By fusing multi-class data, the severity level of the patients can be classified using the meta-learning few-shot learning technique with the residual network with 50 layers deep (ResNet-50) as the base classifier. It has been tested with the outcome of COVID positive chest CT image data. From these various classes, it is possible to predict the onset possibilities of acute COVID lung disorders such as sepsis, acute respiratory distress syndrome (ARDS), COVID pneumonia, COVID bronchitis, etc. The first method of classification is proposed to diagnose whether the patient is affected by COVID-19 or not; it achieves a mean Average Precision (mAP) of and G-mean of with of classification accuracy. The second method of classification is proposed for the detection of various acute lung disorders based on severity provide better performance in all the four stages, the average accuracy is of 95.4%, the G-mean for multiclass achieves and the AUC is compared with the cutting-edge techniques. It enables healthcare professionals to correctly detect severity for potential treatments.
Investigation of the pharmaceutical warehouse locations under COVID-19-A case study for Duzce, Turkey
Pharmaceutical warehouses are among the centers that play a critical role in the delivery of medicines from the producers to the consumers. Especially with the new drugs and vaccines added during the pandemic period to the supply chain, the importance of the regions they are located in has increased critically. Since the selection of pharmaceutical warehouse location is a strategic decision, it should be handled in detail and a comprehensive analysis should be made for the location selection process. Considering all these, in this study, a real-case application by taking the problem of selecting the best location for a pharmaceutical warehouse is carried out for a city that can be seen as critical in drug distribution in Turkey. For this aim, two effective multi-criteria decision-making (MCDM) methodologies, namely Analytic Hierarchy Process (AHP) and Evaluation based on Distance from Average Solution (EDAS), are integrated under spherical fuzzy environment to reflect fuzziness and indeterminacy better in the decision-making process and the pharmaceutical warehouse location selection problem is discussed by the proposed fuzzy integrated methodology for the first time. Finally, the best region is found for the pharmaceutical warehouse and the results are discussed under the determined criteria. A detailed robustness analysis is also conducted to measure the validity, sensibility and effectiveness of the proposed methodology. With this study, it can be claimed that literature has initiated to be revealed for the pharmaceutical warehouse location problem and a guide has been put forward for those who are willing to study this area.
E-GCS: Detection of COVID-19 through classification by attention bottleneck residual network
Recently, the coronavirus disease 2019 (COVID-19) has caused mortality of many people globally. Thus, there existed a need to detect this disease to prevent its further spread. Hence, the study aims to predict COVID-19 infected patients based on deep learning (DL) and image processing.
Identification of cyber harassment and intention of target users on social media platforms
Due to Coronavirus diseases in 2020, all the countries departed into lockdown to combat the spread of the pandemic situation. Schools and institutions remain closed and students' screen time surged. The classes for the students are moved to the digital platform which leads to an increase in social media usage. Many children had become sufferers of cyber harassment which includes threatening comments on young students, sexual torture through a digital platform, people insulting one another, and the use of fake accounts to harass others. The rising effort on automated cyber harassment detection utilizes many AI-related components Natural language processing techniques and machine learning approaches. Though machine learning models using different algorithms fail to converge with higher accuracy, it is much more important to use significant natural language processes and efficient classifiers to detect cyberbullying comments on social media. In this proposed work, the lexical meaning of the text is analysed by the conventional scheme and the word order of the text is performed by the Fast Text model to improve the computational efficacy of the model. The intention of the text is analysed by various feature extraction methods. The score for intention detection is calculated using the frequency of words with a bully-victim participation score. Finally, the proposed model's performance is measured by different evaluation metrics which illustrate that the accuracy of the model is higher than many other existing classification methods. The error rate is lesser for the detection model.
BLCov: A novel collaborative-competitive broad learning system for COVID-19 detection from radiology images
With the global outbreak of COVID-19, there is an urgent need to develop an effective and automated detection approach as a faster diagnostic alternative to avoid the spread of COVID-19. Recently, broad learning system (BLS) has been viewed as an alternative method of deep learning which has been applied to many areas. Nevertheless, the sparse autoencoder in classical BLS just considers the representations to reconstruct the input data but ignores the relationship among the extracted features. In this paper, inspired by the effectiveness of the collaborative-competitive representation (CCR) mechanism, a novel collaborative-competitive representation-based autoencoder (CCRAE) is first proposed, and then collaborative-competitive broad learning system (CCBLS) is proposed based on CCRAE to effectively address the issues mentioned above. Moreover, an automated CCBLS-based approach is proposed for COVID-19 detection from radiology images such as CT scans and chest X-ray images. In the proposed approach, a feature extraction module is utilized to extract features from CT scans or chest X-ray images, then we use these features for COVID-19 detection with CCBLS. The experimental results demonstrated that our proposed approach can achieve superior or comparable performance in comparison with ten other state-of-the-art methods.
PITS: An Intelligent Transportation System in pandemic times
The control of the pandemic caused by SARS-CoV-2 is a challenge for governments all around the globe. To manage this situation, countries have adopted a bundle of measures, including restrictions to population mobility. As a consequence, drivers face with the problem of obtaining fast routes to reach their destinations. In this context, some recent works combine Intelligent Transportation Systems (ITS) with big data processing technologies taking the traffic information into account. However, there are no proposals able to gather the COVID-19 health information, assist in the decision-making process, and compute fast routes in an all-in-one solution. In this paper, we propose a Pandemic Intelligent Transportation System (PITS) based on Complex Event Processing (CEP), Fuzzy Logic (FL) and Colored Petri Nets (CPN). CEP is used to process the COVID-19 health indicators and FL to provide recommendations about city areas that should not be crossed. CPNs are then used to create map models of health areas with the mobility restriction information and obtain fast routes for drivers to reach their destinations. The application of PITS to Madrid region (Spain) demonstrates that this system provides support for authorities in the decision-making process about mobility restrictions and obtain fast routes for drivers. PITS is a versatile proposal which can easily be adapted to other scenarios in order to tackle different emergency situations.
Review on the COVID-19 pandemic prevention and control system based on AI
As a new technology, artificial intelligence (AI) has recently received increasing attention from researchers and has been successfully applied to many domains. Currently, the outbreak of the COVID-19 pandemic has not only put people's lives in jeopardy but has also interrupted social activities and stifled economic growth. Artificial intelligence, as the most cutting-edge science field, is critical in the fight against the pandemic. To respond scientifically to major emergencies like COVID-19, this article reviews the use of artificial intelligence in the combat against the pandemic from COVID-19 large data, intelligent devices and systems, and intelligent robots. This article's primary contributions are in two aspects: (1) we summarized the applications of AI in the pandemic, including virus spreading prediction, patient diagnosis, vaccine development, excluding potential virus carriers, telemedicine service, economic recovery, material distribution, disinfection, and health care. (2) We concluded the faced challenges during the AI-based pandemic prevention process, including multidimensional data, sub-intelligent algorithms, and unsystematic, and discussed corresponding solutions, such as 5G, cloud computing, and unsupervised learning algorithms. This article systematically surveyed the applications and challenges of AI technology during the pandemic, which is of great significance to promote the development of AI technology and can serve as a new reference for future emergencies.
Interval type-3 fuzzy aggregators for ensembles of neural networks in COVID-19 time series prediction
In this work we are presenting an approach for fuzzy aggregation in ensembles of neural networks for forecasting. The aggregator is used in an ensemble to combine the outputs of the networks forming the ensemble. This is done in such a way that the total output of the ensemble is better than the outputs of the individual modules. In our approach a fuzzy system is used to estimate the weights that will be assigned to the outputs in the process of combining them in a weighted average calculation. The uncertainty in the process of aggregation is modeled with interval type-3 fuzzy, which in theory can outperform type-2 and type-1. Publicly available data sets of COVID-19 cases for several countries in the world were utilized to test the proposed approach. Simulation results of the COVID-19 data show the potential of the approach to outperform other aggregators in the literature.
An integrated sustainable medical supply chain network during COVID-19
Nowadays, in the pharmaceutical industry, a growing concern with sustainability has become a strict consideration during the COVID-19 pandemic. There is a lack of good mathematical models in the field. In this research, a production-distribution-inventory-allocation-location problem in the sustainable medical supply chain network is designed to fill this gap. Also, the distribution of medicines related to COVID-19 patients and the periods of production and delivery of medicine according to the perishability of some medicines are considered. In the model, a multi-objective, multi-level, multi-product, and multi-period problem for a sustainable medical supply chain network is designed. Three hybrid meta-heuristic algorithms, namely, ant colony optimization, fish swarm algorithm, and firefly algorithm are suggested, hybridized with variable neighborhood search to solve the sustainable medical supply chain network model. Response surface method is used to tune the parameters since meta-heuristic algorithms are sensitive to input parameters. Six assessment metrics were used to assess the quality of the obtained Pareto frontier by the meta-heuristic algorithms on the considered problems. A real case study is used and empirical results indicate the superiority of the hybrid fish swarm algorithm with variable neighborhood search.
Novel similarity measures in spherical fuzzy environment and their applications
Spherical fuzzy sets (SFSs) have gained great attention from researchers in various fields. The spherical fuzzy set is characterized by three membership functions expressing the degrees of membership, non-membership and the indeterminacy to provide a larger preference domain. It was proposed as a generalization of picture fuzzy sets and Pythagorean fuzzy sets in order to deal with uncertainty and vagueness information. The similarity measure is one of the essential and advantageous tools to determine the degree of similarity between items. Several studies on similarity measures have been developed due to the importance of similarity measure and application in decision making, data mining, medical diagnosis, and pattern recognition in the literature. The contribution of this study is to present some novel spherical fuzzy similarity measures. We develop the Jaccard, exponential, and square root cosine similarity measures under spherical fuzzy environment. Each of these similarity measures is analyzed with respect to decision-makers' optimistic or pessimistic point of views. Then, we apply these similarity measures to medical diagnose and green supplier selection problems. These similarity measures can be computed easily and they can express the dependability similarity relation apparently.