Observation and enhancement through alkali metal doping of p-type conductivity in the layered oxyselenides SrZnOCuSe and BaZn O CuSe
The optoelectronic properties of two layered copper oxyselenide compounds, with nominal composition SrZnOCuSe and BaZnOCuSe, have been investigated to determine their suitability as p-type conductors. The structure, band gaps and electrical conductivity of pristine and alkali-metal-doped samples have been determined. We find that the strontium-containing compound, SrZnOCuSe, adopts the expected tetragonal structure with 4/ symmetry, and has a band gap of 2.16 eV, and a room temperature conductivity of 4.8 × 10 S cm. The conductivity of the compound could be increased to 4.2 S cm when sodium doped to a nominal composition of NaSrZnOCuSe. In contrast, the barium containing material was found to have a small zinc oxide deficiency, with a sample dependent compositional range of BaZn O CuSe where 0.01 < < 0.06, as determined by single crystal X-ray diffraction and powder neutron diffraction. The barium-containing structure could also be modelled using the tetragonal 4/ structure, but significant elongation of the oxygen displacement ellipsoid along the Zn-O bonds in the average structure was observed. This indicated that the oxide ion position was better modelled as a disordered split site with a displacement to change the local zinc coordination from square planar to linear. Electron diffraction data confirmed that the oxide site in BaZn O CuSe does not adopt a long range ordered arrangement, but also that the idealised 4/ structure with an unsplit oxide site was not consistent with the extra reflections observed in the electron diffractograms. The band gap and conductivity of BaZn O CuSe were determined to be 2.22 eV and 2.0 × 10 S cm respectively. The conductivity could be increased to 1.5 × 10 S cm with potassium doping in KBaZn O CuSe. Hall measurements confirmed that both materials were p-type conductors with holes as the dominant charge carriers.
n-Type redox-tuneable conducting polymer optical nanoantennas
Conducting polymers can be dynamically switched between being optically metallic (negative real permittivity) and dielectric (positive real permittivity) by varying their redox state. This has enabled nanoantennas with plasmonic resonances that can be reversibly turned on/off, opening for applications in dynamic metaoptics, reflective displays, and smart windows. However, previous reports on conducting polymer plasmonics were limited to p-type polymers. Here, we show that a highly conducting n-type polymer, called poly(benzodifurandione) (PBFDO), can also provide optically metallic properties and be used to make dynamic optical nanoantennas. The doped version of the polymer becomes metallic at wavelengths above around 700 nm, leading to plasmonic extinction peaks for nanodisks made from the material. These peaks can be reversibly switched off and on electrically or chemically by varying the doping level of the polymer. The study extends the field of dynamic polymer plasmonics to n-type materials and broadens the application areas of PBFDO.
Tunability of topological edge states in germanene at room temperature
Germanene is a two-dimensional topological insulator with a large topological band gap. For its use in low-energy electronics, such as topological field effect transistors and interconnects, it is essential that its topological edge states remain intact at room temperature. In this study, we examine these properties in germanene using scanning tunneling microscopy and spectroscopy at 300 K and compare the results with data obtained at 77 K. Our findings show that the edge states persist at room temperature, although thermal effects cause smearing of the bulk band gap. Additionally, we demonstrate that, even at room temperature, applying an external perpendicular electric field switches the topological states of germanene off. These findings indicate that germanene's topological properties can be maintained and controlled at room temperature, making it a promising material for low-energy electronic applications.
Perspectives on systematic optimization of ultrasensitive biosensors through experimental design
Biosensors have demonstrated versatility across numerous applications; however, their systematic optimization remains a primary obstacle, limiting their widespread adoption as dependable point-of-care tests. Experimental design, a powerful chemometric tool, offers a solution by effectively guiding the development and optimization of ultrasensitive biosensors. This perspective review provides an overview of recent applications of experimental design in the deployment of optical and electrical ultrasensitive biosensors. Various experimental designs, including full factorial, central composite, and mixture designs, are examined as systematic methodologies for optimizing biosensor fabrication, accounting for both individual variable effects and their interactions. Illustrative examples showcasing the optimization of optical and electronic biosensors through design of experiments are presented and critically analyzed. Finally, the future prospects of experimental design in the biosensor community are outlined, highlighting its potential to expedite development and bolster the performance of biosensing devices for point-of-care diagnostics, thereby facilitating their sustainable and reliable integration.
Structural properties of conductive polymer blends interfaced with water: computational insights from PEDOT:PSS
In various bioelectronic applications, conductive polymers come into contact with biological tissues, where water is the major component. In this study, we investigated the interface between the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and water, focusing on how the morphology of the PEDOT:PSS is altered by water permeation. We constructed well-equilibrated PEDOT:PSS-water systems in both PEDOT- and PSS-rich phases. Our findings show that water permeates into the polymer through a complex network of water channels, which exhibit a similar pore size distribution in both PEDOT- and PSS-rich phases, leading to similar water intake in these phases. Compared to the dry state of the polymer, water permeation leads to the formation of smaller, less ordered, and distantly located lamella crystallites, potentially resulting in reduced conductivity. Therefore, we argue that these structural changes from the dry state of the polymer to the wet state may be the origin of the significant conductivity reduction observed experimentally in PEDOT:PSS in water or PEDOT:PSS hydrogels.
Mobile intrinsic point defects for conductive neutral domain walls in LiNbO
Conductive ferroelectric domain walls (DWs) hold great promise for neuromorphic nanoelectronics as they can contribute to realize multi-level diodes and nanoscale memristors. Point defects accumulating at DWs will change the local electrical transport properties. Hence, local, inter-switchable n- and p-type conductivity at DWs can be achieved through point defect population control. Here, we study the impact of point defects on the electronic structure at neutral domain walls in LiNbO by density functional theory (DFT). Segregation of Li and O vacancies was found to be energetically favourable at neutral DWs, implying that charge-compensating electrons or holes can give rise to n- or p-type conductivity. Changes in the electronic band gap and defect transition levels are discussed with respect to local property engineering, opening the pathway for reversible tuning between n- and p-type conduction at neutral ferroelectric DWs. Specifically, the high Curie temperature of LiNbO and the significant calculated mobility of O and Li vacancies suggest that thermal annealing and applied electric fields can be used experimentally to control point defect populations, and thus enable rewritable pn-junctions.
Calibration of several first excited state properties for organic molecules through systematic comparison of TDDFT with experimental spectra
Time-dependent density functional theory (TDDFT) is a powerful computational tool for investigating excitation properties in organic electronics, and it holds significant potential for high-throughput virtual screening (HTVS) in this field. While most benchmarks focus on excitation energies, less attention has been paid to evaluating the accuracy of computed oscillator strengths and exciton reorganization energies against experimental data. In this work, we provide a systematic approach to evaluate in parallel the accuracy of these three quantities on the basis of a suitable fitting of the experimental absorption spectra of 71 molecules in solution. After considering 18 computational methodologies, the results from the M06-2X/def2-TZVP/PCM method demonstrate the strongest correlation with experimental data across the desired properties. For HTVS, the M06-2X/6-31G(d)/PCM method appears to be a particularly convenient choice among all methodologies due to its balance of computational efficiency and accuracy. Our results provide an additional benchmark needed before employing TDDFT methods for the discovery and design of organic electronic molecules.
Phase distribution regulation of formamidinium-based quasi-2D perovskites through solution engineering
Quasi-2D perovskites have attracted attention as potential solar energy absorber materials due to their balanced efficiency and stability and their unique quantum-well structures. In order to facilitate directional excitons and charge carrier transport and preferential energy transfer landscape in photovoltaic thin films, the phase distribution formed by different types of microstructural domains should be regulated. In this work, the Dion-Jacobson-type spacer 1,4-phenylenedimethanammonium (PDMA) was used, and different strategies were pursued to control the phase distribution in formamidinium-based (FA) quasi-2D perovskites based on the composition of (PDMA)FAPbI. In general, doping with FACl modulated the crystallization kinetics, forming 2D low- crystals on the top surface or a reversed-gradient phase distribution, depending on whether excess or substitutional doping was employed. Alternatively, mixing with a Ruddlesden-Popper spacer helped bridging to adjacent octahedra in pure PDMA-based perovskites and improved crystallization, while regulating the quantum-well structures to give a normal-gradient phase distribution, where 2D domains resided on the bottom side. By combining FACl doping and spacer mixing, the film showed both a reversed-gradient phase distribution and larger vertically aligned grains. This work contributes to the knowledge of how to manipulate and regulate the phase distribution in FA-based quasi-2D perovskites and further paves the way for fabricating corresponding devices with high efficiency and stability.
Growth mechanism of oleylammonium-based tin and lead bromide perovskite nanostructures
Metal halide perovskites, particularly using tin and lead as bivalent cations, are well known for their synthetic versatility and ion mobility. These materials possess intriguing ionic properties that allow the formation of 2D Ruddlesden-Popper (RP) and 3D metal halide perovskite nanocrystals (NCs) under similar synthetic conditions. We studied the synthesis mechanism of oleylammonium-based Sn and Pb bromide perovskites 2D Ruddlesden-Popper (RP) in comparison with the 3D CsPbBr and CsSnBr NCs. Using experimental techniques in combination with theoretical calculations, we studied the interactions of the long-chain organic cations with the inorganic layers and between each other to assess their stability. Our findings suggest that tin bromide is more inclined toward forming higher-order RP phases or 3D NCs than lead bromide. Furthermore, we demonstrate the synthesis of precisely tuned CsSnBr 3D NCs (7 and 10 nm) using standard surface ligands. When the 3D and 2D tin halide perovskite nanostructures coexist in suspension, the obtained drop-cast thin films showed the preferential positioning of residual RP nanostructures at the interface with the substrate. This study encourages further exploration of low-dimensional hybrid materials and emphasizes the need for understanding mechanisms to develop efficient synthetic routes for high-quality tin-halide perovskite NCs.
Highly efficient organic-graphene hybrid photodetectors molecular peripheral editing
Hybrid systems based on graphene and organic molecules are highly appealing for "correcting" the limited optoelectronic properties of 2D materials. However, an in-depth understanding of the correlation between the structure of the molecular sensitizer and the physical properties of the hybrid toward high-performance organic-graphene hybrid photodetectors remains elusive. Herein, an molecular design a peripheral editing approach on the organic molecules is employed to elucidate the structure-property relationship when interfaced with graphene forming hybrid systems. Efficient doping of graphene can be attained by physisorption of tetrathiafulvalene molecules exposing electron-donating peripheral groups, benefiting from a strong coupling yielding efficient charge transfer, ultimately leading to photodetectors with an ultra-high responsivity of 1.1 × 10 A W and a specific detectivity of 6.5 × 10 Jones, thereby outperforming state-of-the-art graphene-based photodetectors. These results offer valuable insights for future optimization of graphene-based photodetectors through molecular functionalization.
Blade-coated perovskite nanoplatelet polymer composites for sky-blue light-emitting diodes
Colloidal perovskite nanoplatelets (NPLs) have shown promise in tackling blue light-emitting diode challenges based on their tunable band gap and high photoluminescence efficiencies. However, high quality and large area dense NPL films have been proven to be very hard to prepare because of their chemical and physical fragility during the liquid phase deposition. Herein, we report a perovskite-polymer composite film deposition strategy with fine morphology engineering obtained using the blade coating method. The effects of the polymer type, solution concentration, compounding ratio and film thickness on the film quality are systematically investigated. We found that a relatively high-concentration suspension with an optimized NPL to polymer ratio of 1 : 2 is crucial for the suppression of phase separation and arriving at a uniform film. Finally, sky-blue NPL-based perovskite light-emitting diodes were fabricated by blade coating showing an EQE of 0.12% on a device area of 16 mm.
Chiral cadmium-amine complexes for stimulating non-linear optical activity and photoluminescence in solids based on aurophilic stacks
The design of high-performance optical materials can be realized using coordination polymers (CPs) often supported by non-covalent interactions, such as metallophilicity. The challenge is to control two or more optical effects, , non-linear optics (NLO) and photoluminescence (PL). We present a new strategy for the combination of the NLO effect of second-harmonic generation (SHG) and the visible PL achieved by linking dicyanidoaurate(i) ions, which form luminescent metallophilic stacks, with cadmium(ii) complexes bearing chiral amine ligands, used to break the crystal's symmetry. We report a family of NLO- and PL-active materials based on heterometallic Cd(ii)-Au(i) coordination systems incorporating enantiopure propane-1,2-diamine (pda) ligands (1-, 1-), their racemate (2), and enantiopure -cyclopentane-1,2-diamine (cpda) ligands (3-, 3-). Due to acentric space groups, they exhibit the SHG signal, tunable within the range of 11-24% of the KDP reference, which was correlated with the dipole moments of Cd(ii) units. They show efficient blue PL whose energy and quantum yield, the latter ranging from 0.40 to 0.83, are controlled by Cd(ii) complexes affecting the Au-Au distances and vibrational modes. We prove that chiral Cd(ii)-amine complexes play the role of molecular agents for the stimulation of both the NLO and PL of the materials based on aurophilic stacks.
Exploring the potential of lanthanide-doped oxyfluoride materials for bright green upconversion and their promising applications towards temperature sensing and drug delivery
The most efficient upconversion (UC) materials reported to date are based on fluoride hosts with low phonon energies, which reduce the amount of nonradiative transitions. In particular, NaYF doped with Yb and Er at appropriate ratios is known as one of the most efficient UC phosphors. However, its low thermal stability limits its use for certain applications. On the other hand, oxide hosts exhibit better thermal stability, yet they have higher phonon energies and are thus prone to lower UC efficiencies. As a result, developing host nanomaterials that combine the robustness of oxides with the high upconversion efficiencies of fluorides remains an intriguing prospect. Herein, we demonstrate the formation of ytrrium doped oxyfluoride (YOF:Yb,Er) particles, which are prepared by growing a NaYF:Yb,Er layer around SiO spherical particles and consecutively applying a high-temperature annealing step followed by the removal of SiO template. Our interest lies in employing these materials as Boltzmann type physiological range luminescence thermometers, but their weak green emission is a drawback. To overcome this issue, and engineer materials suitable for Boltzmann type thermometry, we have studied the effect of introducing different metal ion co-dopants (Gd, Li or Mn) into the YOF:Yb,Er particles, focusing on the overall emission intensity, as well as the green to red ratio, upon 975 nm laser excitation. These materials are explored for their use as ratiometric thermometers, and further also as drug carriers, including their simultaneous use for these two applications. The investigation also includes examining their level of toxicity towards specific human cells - normal human dermal fibroblasts (NHDFs) - to evaluate their potential use for biological applications.
Cold atmospheric plasma deposition of antibacterial polypyrrole-silver nanocomposites on wearable electronics for prolonged performance
Wearable electronics have become integral for monitoring physiological parameters in diverse applications, particularly in medical and military fields. e-Textiles, featuring integrated conductive threads or fabrics, offer seamless integration and comfort for prolonged contact with the body. Despite their potential, the biofouling of textile-based electrode systems by skin microbes remains a significant challenge, limiting their operational lifespan. Recent studies have highlighted the efficacy of conductive nanocomposites with antibacterial agents, such as silver nanoparticles (AgNPs), in addressing biofouling concerns. However, implementing such systems on 3D fibrous structures and textile surfaces often proves complex and inefficient. To overcome these challenges, we explored cold atmospheric plasma (CAP)-based polymerization for the direct deposition of functional conductive polypyrrole-silver (PPy-Ag) nanocomposites onto conductive textile surfaces. For this process, a customized CAP deposition system was engineered, enabling precise material deposition through robotic control of the plasma jet. This process achieved direct, conformal attachment onto textile fibrous structures, ensuring uniform distribution of conductive polypyrrole and silver in the form of AgNPs throughout the polymer polypyrrole matrix without compromising fabric flexibility and breathability, which was validated through different surface electron microscopy and chemical analysis (, EDX, FTIR, Raman, and XRD). Systematic studies with various precursor mixtures identified an optimized PPy-Ag composition that demonstrated stable antibacterial properties and biocompatibility against common skin microbes and epithelial cells. Systematic studies with various precursor mixtures identified an optimized PPy-Ag composition, with the precursor mixture containing 96 wt% pyrrole and 4 wt% AgNO weight ratios as the optimal surface coating process, demonstrating stable antibacterial properties and biocompatibility against common skin microbes and epithelial cells respectively. As a proof of concept, the nanocomposite coating was applied to conductive carbon fabric surfaces as dry electrodes in a wearable garment for continues electrocardiography (ECG) monitoring over 10 days. Results revealed a significantly longer performance of the dry electrodes as comparable to standard gel-based Ag/AgCl electrodes (1 day) while providing less noise in ECG signal measurements from the subject, showcasing the potential of this technology for practical wearable applications. Envisioned as a groundbreaking solution, this technology opens new avenues for the scalable and effective integration of functional conductive circuits and sensors into everyday garments, ensuring prolonged and efficient performance in wearable electronics.
A polyphosphazene elastomer containing 2,2,2-trifluoroethoxy groups as a dielectric in electrically responsive soft actuators
The adaptive structure and excellent actuation of dielectric elastomer actuators (DEAs) make them promising candidates for soft robotics, haptic interfaces and artificial muscles. A wide variety of elastomers have been synthesised and investigated as dielectrics. Inorganic polymers such as polysiloxanes and polyphosphazenes have a low glass transition temperature. While polydimethylsiloxane (PDMS) has made its way into DEAs, the latter has received little attention in this field. Here, we present a dielectric elastomer based on polyphosphazene modified with 2,2,2,-trifluoroethoxy groups as the dielectric, which exhibits a dielectric permittivity two times higher than polydimethylsiloxanes (PDMS), excellent elasticity and a high dielectric breakdown field. These properties enable fast, reliable actuation and higher electrostatic forces than conventional PDMS. The actuators can withstand repeated actuation cycles and are suitable for long-term reliability applications.
Spin polarized current in chiral organic radical monolayers
The chirality-induced spin selectivity (CISS) effect is the capability of chiral molecules to act as spin filters, to selectively sort flowing electrons based on their spin states. The application of this captivating phenomenon holds great promise in the realm of molecular spintronics, where the primary focus lies in advancing technologies based on chiral molecules to regulate the injection and coherence of spin-polarized currents. In this context, we conducted a study to explore the spin filtering capabilities of a monolayer of the thia-bridged triarylamine hetero[4]helicene radical cation chemisorbed on a metallic surface. Magnetic-conductive atomic force microscopy revealed efficient electron spin filtering at exceptionally low potentials. Furthermore, we constructed a spintronic device by incorporating a monolayer of these molecules in between two electrodes, obtaining an asymmetric magnetoresistance trend with signal inversion in accordance with the handedness of the enantiomer involved, indicative of the presence of the CISS effect. Our findings underscore the significance of thia[4]azahelicene organic radicals as promising candidates for the development of quantum information operations based on the CISS effect as a tool to control the molecular spin states.
Electron transfer and energy exchange between a covalent organic framework and CuFeS nanoparticles
CuFeS is a prominent chalcogenide that possesses similar optical properties and a significantly lower cost, compared to gold. Additionally, covalent organic frameworks are a class of materials at the forefront of current research, mainly used as photoactive components and porous absorbers. Hence, in this work, hydrophilic CuFeS particles are coupled with multi-functional covalent organic frameworks through ionic bonding to produce a hybrid material with unique and optimized properties. To render the CuFeS particles negatively charged and dispersible in water, we coated them with sodium dodecyl sulfonate, shifting the surface plasmon resonance of the nanoparticles from 472 to 492 nm. When they are electrostatically assembled with the positively charged COFs, an S-scheme is formed and the fluorescence of the hybrid materials is highly quenched, with the electron transfer happening from the networks to the nanoparticles and a simultaneous energy exchange which is dependent on the emission wavelength. Through detailed fluorescence spectroscopy, time-resolved measurements and Stern-Volmer analysis, we identified an efficient emission quenching that differs from the bulk to the exfoliated hybrid system, while detailed electron microscopy studies demonstrated the strong interaction between the two components. The quenching mechanisms and the on or off surface resonance dependent lifetime could be applied to photocatalytic and photovoltaic applications.
Structural and Physical Properties of Two Distinct 2D Lead Halides with Intercalated Cu(II)
Transition metal cation intercalation between the layers of two-dimensional (2D) metal halides is an underexplored research area. In this work we focus on the synthesis and physical property characterizations of two layered hybrid lead halides: a new compound [Cu(OC-CH-NH)]PbBr and the previously reported [Cu(OC-(CH)-NH)]PbBr. These compounds exhibit 2D layered crystal structures with incorporated Cu between the metal halide layers, which is achieved by combining Cu(II) and lead bromide with suitable amino acid precursors. The resultant [Cu(OC-(CH)-NH)]PbBr adopts a 2D layered perovskite structure, whereas the new compound [Cu(OC-CH-NH)]PbBr crystallizes with a new structure type based on edge-sharing dodecahedral PbBrO building blocks. [Cu(OC-CH-NH)]PbBr is a semiconductor with a bandgap of 3.25 eV. It shows anisotropic charge transport properties with a semiconductor resistivity of 1.44×10 Ω·cm (measured along the -axis) and 2.17×10 Ω·cm (along the -plane), respectively. The fabricated prototype detector based on this material showed response to soft low-energy X-rays at 8 keV with a detector sensitivity of 1462.7 μCGycm, indicating its potential application for ionizing radiation detection. These encouraging results are discussed together with the results from density functional theory calculations, optical, magnetic, and thermal property characterization experiments.
Pyroelectricity in poled all-organic polar polynorbornene/polydimethylsiloxane-based stretchable electrets
Pyroelectricity in a recently developed all-organic composite electret with a polar polynorbornene-based filler and polydimethylsiloxane (PDMS) matrix has been studied with the help of thermal and dielectric techniques. Measurement of the pyroelectric coefficient using a quasi-static periodic temperature variation at RT shows a non-linear dependence with the applied poling field, which is uncharacteristic of amorphous materials. Dielectric relaxation spectroscopy (DRS) and the thermally stimulated depolarization current (TSDC) technique reveal that this behaviour can be attributed to Maxwell-Wagner interface (MWI) polarization that occurs at the filler-matrix interface. These charges released during the onset of dipolar and relaxations of the filler particles contribute majorly to the observed pyroelectricity at RT. The saturation of both MWI TSDC shoulders and spontaneous polarization at higher electric fields correlates with the coefficient value reaching a plateau at these applied fields. A maximum coefficient of 0.54 μC m K is calculated for a poling field of 30 V μm.
Polarity profiling of porous architectures: solvatochromic dye encapsulation in metal-organic frameworks
Metal-organic frameworks (MOFs) have gathered significant interest due to their tunable porosity leading to diverse potential applications. In this study, we investigate the incorporation of the fluorosolvatochromic dye 2-butyl-5,6-dimethoxyisoindoline-1,3-dione ([double bond, length as m-dash]Phth) into various MOF structures as a means to assess the polarity of these porous materials. As a purely inorganic compound, zeolite Y was tested for comparison. The fluorosolvatochromic behavior of Phth, which manifests as changes in its emission spectra in response to solvent polarity, provides a sensitive probe for characterizing the local environment within the MOF pores. Through systematic variation of the MOF frameworks, we demonstrate the feasibility of using (fluoro-)solvatochromic dyes as probes for assessing the polarity gradients within MOF structures. Additionally, the fluorosolvatochromic response was studied as a function of loading amount. Our findings not only offer insights into the interplay between MOF architecture and guest molecule interactions but also present a promising approach for the rational design and classification of porous materials based on their polarity properties.
Solvatochromic and Aggregation-Induced Emission Active Nitrophenyl-Substituted Pyrrolidinone-Fused-1,2-Azaborine with a Pre-Twisted Molecular Geometry
Boron-nitrogen-containing heterocycles with extended conjugated π-systems such as polycyclic aromatic 1,2-azaborines, hold the fascination of organic chemists due to their unique optoelectronic properties. However, the majority of polycyclic aromatic 1,2-azaborines aggregate at high concentrations or in the solid-state, resulting in aggregation-caused quenching (ACQ) of emission. This practical limitation poses significant challenges for polycyclic aromatic 1,2-azaborines' use in many applications. Additionally, only a few solvatochromic polycyclic aromatic 1,2-azaborines have been reported and they all display minimal solvatochromism. Therefore, the scope of available polycyclic 1,2-azaborines needs to be expanded to include those displaying fluorescence at high concentration and in the solid-state as well as those that exhibit significant changes in emission intensity in various solvents due to different polarities. To address the ACQ issue, we evaluate the effect of a pre-twisted molecular geometry on the optoelectronic properties of polycyclic aromatic 1,2-azaborines. Specifically, three phenyl-substituted pyrrolidinone-fused 1,2-azaborines (PFAs) with similar structures and functionalized with diverse electronic moieties (-H, -NO, -CN, referred to as , , and , respectively) were experimentally and computationally studied. Interestingly, displays two distinct emission properties: 1) solvatochromism, in which its emission and quantum yields are tunable with respect to solvent polarity, and 2) fluorescence that can be completely "turned off" and "turned on" via aggregation-induced emission (AIE). This report provides the first example of a polycyclic aromatic 1,2-azaborine that displays both AIE and solvatochromism properties in a single BN-substituted backbone. According to time-dependent density function theory (TD-DFT) calculations, the fluorescence properties of can be explained by the presence of a low-lying n-π* charge transfer state inaccessible to or . These findings will help in the design of future polycyclic aromatic 1,2-azaborines that are solvatochromic and AIE-active as well as in understanding how molecular geometry affects these compounds' optoelectronic properties.