Neuroendocrine contribution to sex-related variations in adverse air pollution health effects
Air pollution exposure is ranked as a leading environmental risk factor for not only cardiopulmonary diseases but also for systemic health ailments including diabetes, reproductive abnormalities, and neuropsychiatric disorders, likely mediated by central neural stress mechanisms. Current experimental evidence links many air pollution health outcomes with activation of neuroendocrine sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal (HPA) stress axes associated with resultant increases in adrenal-derived hormone levels acting as circulating mediators of multi-organ stress reactions. Epidemiological and experimental investigations also demonstrated sex-specific responses to air pollutant inhalation, which may be attributed to hormonal interactions within the stress and reproductive axes. Sex hormones (androgens and estrogens) interact with neuroendocrine functions to influence hypothalamic responses, subsequently augmenting stress-mediated metabolic and immune changes. These neurohormonal interactions may contribute to innate sex-specific responses to inhaled irritants, inducing differing individual susceptibility. The aim of this review was to: (1) examine neuroendocrine co-regulation of the HPA axis by gonadal hormones, (2) provide experimental evidence demonstrating sex-specific respiratory and systemic effects attributed to air pollutant inhalation exposure, and (3) postulate proposed mechanisms of stress and sex hormone interactions during air pollution-related stress.
Local and systemic effects of microplastic particles through cell damage, release of chemicals and drugs, dysbiosis, and interference with the absorption of nutrients
Microplastic particles (MPs) have been detected in a variety of environmental samples, including soil, water, food, and air. Cellular studies and animal exposures reported that exposure to MPs composed of different polymers might result in adverse effects at the portal of entry (local) or throughout the body (systemic). The most relevant routes of particle uptake into the body are oral and respiratory exposure. This review describes the various processes that may contribute to the adverse effects of MPs. Only MPs up to 5 µm were found to cross epithelial barriers to a significant extent. However, MPs may also exert a detrimental impact on human health by acting at the epithelial barrier and within the lumen of the orogastrointestinal and respiratory tract. The potential for adverse effects on human health resulting from the leaching, sorption, and desorption of chemicals, as well as the impact of MPs on nutritional status and dysbiosis, are reviewed. models are suggested as a means of (1) assessing permeation, (2) determining adverse effects on cells of the epithelial barrier, (3) examining influence of digestive fluids on leaching, desorption, and particle properties, and (4) role of microbiota-epithelial cell interactions. The contribution of these mechanisms to human health depends upon exposure levels, which unfortunately have been estimated very differently.
models to evaluate multidrug resistance in cancer cells: Biochemical and morphological techniques and pharmacological strategies
The overexpression of ATP-binding cassette (ABC) transporters contributes to the failure of chemotherapies and symbolizes a great challenge in oncology, associated with the adaptation of tumor cells to anticancer drugs such that these transporters become less effective, a mechanism known as multidrug resistance (MDR). The aim of this review is to present the most widely used methodologies for induction and comprehension of models for detection of multidrug-resistant (MDR) modulators or inhibitors, including biochemical and morphological techniques for chemosensitivity studies. The overexpression of MDR proteins, predominantly, the subfamily glycoprotein-1 (P-gp or ABCB1) multidrug resistance, multidrug resistance-associated protein 1 (MRP1 or ABCCC1), multidrug resistance-associated protein 2 (MRP2 or ABCC2) and cancer resistance protein (ABCG2), in chemotherapy-exposed cancer lines have been established/investigated by several techniques. Amongst these techniques, the most used are (i) colorimetric/fluorescent indirect bioassays, (ii) rhodamine and efflux analysis, (iii) release of 3,30-diethyloxacarbocyanine iodide by fluorescence microscopy and flow cytometry to measure P-gp function and other ABC transporters, (iv) exclusion of calcein-acetoxymethylester, (v) ATPase assays to distinguish types of interaction with ABC transporters, (vi) morphology to detail phenotypic characteristics in transformed cells, (vii) molecular testing of resistance-related proteins (RT-qPCR) and (viii) 2D and 3D models, (ix) organoids, and (x) microfluidic technology. Then, models for detecting chemotherapy MDR cells to assess innovative therapies to modulate or inhibit tumor cell growth and overcome clinical resistance. It is noteworthy that different therapies including anti-miRNAs, antibody-drug conjugates (to natural products), and epigenetic modifications were also considered as promising alternatives, since currently no anti-MDR therapies are able to improve patient quality of life. Therefore, there is also urgency for new clinical markers of resistance to more reliably reflect effectiveness of novel antitumor drugs.
An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders
The microbiome-gut-brain axis is altered by environmental stressors such as heat, diet, and pollutants as well as microbes in the air, water, and soil. These stressors might alter the host's microbiome and symbiotic relationship by modifying the microbial composition or location. Compartmentalized mutualistic microbes promote the beneficial interactions in the host leading to circulating metabolites and hormones such as insulin and leptin that affect inter-organ functions. Inflammation and oxidative stress induced by environmental stressors may alter the composition, distribution, and activities of the microbes in the microbiomes such that the resultant metabolite and hormone changes are no longer beneficial. The microbiome-gut-brain axis and immune adverse changes that may accompany environmental stressors are reviewed for effects on innate and adaptive immune cells, which may make host immunity less responsive to pathogens and more reactive to self-antigens. Cardiovascular and fluid exchanges to organs might adversely alter organ functionality. Organs, especially the brain, need a consistent supply of nutrients and clearance of debris; disruption of these exchanges by stressors, and involvement of gut microbiome are discussed regarding neural dysfunctions with Alzheimer's disease, autistic spectrum disorders, viral infections, and autoimmune diseases. The focus of this review includes the manner in which environmental stressors may disrupt gut microbiota leading to adverse immune and hormonal influences on development of neuropathology related to hyperhomocysteinemia, inflammation, and oxidative stress, and how certain therapeutics may be beneficial. Strategies are explored to lessen detrimental effects of environmental stressors on central and peripheral health navigated toward (1) understanding neurological disorders and (2) promoting environmental and public health and well-being.
Styrene lung cancer risk assessment: an alternative evaluation of human lung cancer risk assuming mouse lung tumors are potentially human relevant and operating by a threshold-based non-genotoxic mode of action
Rodent inhalation studies indicate styrene is a mouse lung-specific carcinogen. Mode-of-action (MOA) analyses indicate that the lung tumors cannot be excluded as weakly quantitatively relevant to humans due to shared oxidative metabolites detected in rodents and humans. However, styrene also is not genotoxic following dosing. The objective of this review was to characterize occupational and general population cancer risks by conservatively assuming mouse lung tumors were relevant to humans but operating by a non-genotoxic MOA. Inhalation cancer values reference concentrations for respective occupational and general population exposures (RfC and RfC) were derived from initial benchmark dose (BMD) modeling of mouse inhalation tumor dose-response data. An overall lowest BMDL of 4.7 ppm was modeled for lung tumors, which was further duration- and dose-adjusted by physiologically based pharmacokinetic (PBPK) modeling to derive RfC values of 6.2 ppm and 0.8 ppm, respectively. With the exception of open-mold fiber reinforced composite workers not using personal protective equipment (PPE), the RfC values are greater than typical occupational and general population human exposures, thus indicating styrene exposures represent a low potential for human lung cancer risk. Consistent with this conclusion, a review of styrene occupational epidemiology did not support a conclusion of an association between styrene exposure and lung cancer occurrence, and further supports a conclusion that the conservatively derived RfC is lung cancer protective.
Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now!
Regulatory dose-response assessments traditionally rely on data and default assumptions. New Approach Methods (NAMs) present considerable opportunities to both augment traditional dose-response assessments and accelerate the evaluation of new/data-poor chemicals. This review aimed to determine the potential utilization of NAMs through a unified conceptual framework that compartmentalizes derivation of toxicity values into five sequential Key Dose-response Modules (KDMs): (1) point-of-departure (POD) determination, (2) test system-to-human (e.g. inter-species) toxicokinetics and (3) toxicodynamics, (4) human population (intra-species) variability in toxicodynamics, and (5) toxicokinetics. After using several "traditional" dose-response assessments to illustrate this framework, a review is presented where existing NAMs, including , , and approaches, might be applied across KDMs. Further, the false dichotomy between "traditional" and NAMs-derived data sources is broken down by organizing dose-response assessments into a matrix where each KDM has Tiers of increasing precision and confidence: Tier 0: Default/generic values, Tier 1: Computational predictions, Tier 2: Surrogate measurements, and Tier 3: Direct measurements. These findings demonstrated that although many publications promote the use of NAMs in KDMs (1) for POD determination and (5) for human population toxicokinetics, the proposed matrix of KDMs and Tiers reveals additional immediate opportunities for NAMs to be integrated across other KDMs. Further, critical needs were identified for developing NAMs to improve dosimetry and quantify test system and human population toxicodynamics. Overall, broadening the integration of NAMs across the steps of dose-response assessment promises to yield higher throughput, less animal-dependent, and more science-based toxicity values for protecting human health.
Relevance and feasibility of principles for health and environmental risk decision-making
Globally, national regulatory authorities are both responsible and accountable for health and environmental decisions related to diverse products and risk decision contexts. These authorities provided regulatory oversight and expedited market authorizations of vaccines and other therapeutic products during the COVID-19 pandemic. Regulatory decisions regarding such products and situations depend upon well-established risk assessment and management steps. The underlying processes supporting such decisions were outlined in frameworks describing the complex interactions between factors including risk assessment and management steps as well as principles which help guide risk decision-making. In 2022, experts in risk science proposed a set of 10 guiding principles, further examining the intersection and utility of these principles using 10 diverse risk contexts, and inviting a broader discourse on the application of these principles in risk decision-making. To add to this information, Canadian regulatory practitioners responsible for evaluating health and environmental risks and establishing policies convened at a Health Canada workshop on . This review reports the results derived from this interactive engagement and provides a first pragmatic analysis of the relevance, importance, and feasibility of such principles for health and environmental risk decision-making within the Canadian regulatory context.
Review of environmental airborne pyrene/benzo[a]pyrene levels from industrial emissions for the improvement of 1-hydroxypyrene biomonitoring interpretation
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of significant public health concern, with several that are highly toxic to humans, including some proven or suspected carcinogens. To account for the high variability of PAH mixtures encountered in occupational settings, adjusting urinary 1-hydroxypyrene (1-OHP) levels by the total airborne pyrene (PyrT)/benzo[a]pyrene (BaP) ratio is essential for human biomonitoring (HBM). Given the complexity and cost of systematically monitoring atmospheric levels, alternative approaches to simultaneous airborne and HBM are required. The aim of this review was to catalog airborne PyrT/BaP ratios measured during different industrial activities and recommend 1-OHP-dedicated biological guidance values (BGV). A literature search was conducted. Seventy-one studies were included, with 5619 samples pertaining to 15 industrial sectors, 79 emission processes, and 213 occupational activities. This review summarized more than 40 years of data from almost 20 countries and highlighted the diversity and evolution of PAH emissions. PyrT/BaP ratios were highly variable, ranging from 0.8 in coke production to nearly 40 in tire and rubber production. A single PyrT/BaP value cannot apply to all occupational contexts, raising the question of the relevance of defining a single biological limit value for 1-OHP in industrial sectors where the PyrT/BaP ratio variability is high. Based upon the inventory, a practical approach is proposed for systematic PAH exposure and risk assessment, with a simple frame to follow based upon specific 1-OHP BGVs depending upon the occupational context and setup of a free PAH HBM interactive tool.
Application of nanoformulations as a strategy to optimize chemotherapeutic treatment of glioblastoma: a systematic review
The aim of this review was to explore the advances of nanoformulations as a strategy to optimize glioblastoma treatment, specifically focusing on targeting and controlling drug delivery systems to the tumor. This review followed the PRISMA recommendations. The studies were selected through a literature search conducted in the electronic databases PubMed Central, Science Direct, Scopus and Web of Science, in April 2023, using the equation descriptors: (nanocapsule OR nanoformulation) AND (glioblastoma). Forty-seven investigations included were published between 2011 and 2023 to assess the application of different nanoformulations to optimize delivery of chemotherapies including temozolomide, carmustine, vincristine or cisplatin previously employed in brain tumor therapy, as well as investigating another 10 drugs. Data demonstrated the possible application of different matrices employed as nanocarriers and utilization of functionalizing agents to improve internalization of chemotherapeutics. Functionalization was developed with the application of peptides, micronutrients/vitamins, antibodies and siRNAs. Finally, this review demonstrated the practical and clinical application of nanocarriers to deliver multiple drugs in glioblastoma models. These nanomodels might ideally be developed using functionalizing ligand agents that preferably act synergistically with the drug these agents carry. The findings showed promising results, making nanoformulations one of the best prospects for innovation and improvement of glioblastoma treatment.
The possible impacts of nano and microplastics on human health: lessons from experimental models across multiple organs
The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.
Occupational exposure to endotoxins and small cell lung cancer: a systematic review with meta-analysis
The relationship of occupational exposure to endotoxins with different histologic subtypes of lung cancer has not been established. Our objective was to conduct a systematic review with meta-analysis to assess the effect of exposure to endotoxins on the development of small cell lung cancer (SCLC). A bibliographic search was conducted using MEDLINE, Embase, CENTRAL, and Web of Science databases until December 2022, including all cohort and/or case-control studies that examined occupational exposure to endotoxins and SCLC. Risk of bias was assessed using the U.S. Office of Health Assessment and Translation tool. A random effects model was applied, publication bias were assessed, and a sensitivity analysis was conducted. Four papers were selected for meta-analysis purposes. A total of 144 incident cases of SCLC and 897 population or hospital controls were included. Occupational exposure to endotoxins was considered for textile/leather industry and agricultural sector workers exposed to endotoxins originating from wool, cotton, or leather dust. Except for one study, all investigations were classified as having a low probability of risk of biases. The results of the meta-analysis were not statistically significant (pooled OR: 0.86; 95% CI:0.69-1.08). In addition, neither between-study heterogeneity (I=0%;p=0.92) nor publication bias was observed (p=0.49). The results of the sensitivity analysis, after including five studies that assessed the risk of SCLC among textile industry and crop/livestock farm workers (not specifically exposed to endotoxins), showed a negative statistically non-significant association and low between-study heterogeneity (pooled OR: 0.90; 95% CI:0.79-1.02; I=22%;p=0.23). Subjects exposed to occupational exposure to endotoxins seem to exhibit a negative association with the development of SCLC, although the results are not conclusive.
Dermal absorption of cyclic and linear siloxanes: a review
Cyclic and linear siloxanes are compounds synthesized from silicon consisting of alternating atoms of silicone and oxygen [Si-O] units with organic side chains. The most common cyclic siloxanes are octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), while the most common linear siloxanes are high molecular weight polydimethylsiloxanes (PDMS) and low molecular weight volatile linear siloxanes known as hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5). These compounds (1) exhibit low dermal toxicity, (2) are generally inert and non-reactive, and (3) are compatible with a wide range of chemicals offering beneficial chemical properties which include the following: wash-off or transfer resistance from the skin, sun protection factor (SPF) enhancement, emolliency in cleaning products). Because of these properties, these compounds are incorporated into multiple consumer products for use on the skin, such as cosmetics and health-care products, with over 300,000 tons annually sold into the personal care and consumer products sector. Because of their widespread use in consumer products and potential for human dermal exposure, a comprehensive understanding of the dermal absorption and overall fate of siloxanes following dermal exposure is important. This review summarizes available data associated with the dermal absorption/penetration as well as fate of the most commonly used siloxane substances.
Effects associated with exposure to the emerging contaminant octyl-methoxycinnamate (a UV-B filter) in the aquatic environment: a review
Given the increasing concern surrounding ultraviolet (UV) radiation-induced skin damage, there has been a rise in demand for UV filters. Currently, UV-filters are considered emerging contaminants. The extensive production and use of UV filters have led to their widespread release into the aquatic environment. Thus, there is growing concern that UV filters may bioaccumulate and exhibit persistent properties within the environment, raising several safety health concerns. Octyl-methoxycinnamate (OMC) is extensively employed as a UV-B filter in the cosmetic industry. While initially designed to mitigate the adverse photobiological effects attributed to UV radiation, the safety of OMC has been questioned with some studies reporting toxic effects on environment. The aim of this review to provide an overview of the scientific information regarding the most widely used organic UV-filter (OMC), and its effects on biodiversity and aquatic environment.
Standardized guidelines for Africanized honeybee venom production needed for development of new apilic antivenom
Africanized bees have spread across the Americas since 1956 and consequently resulted in human and animal deaths attributed to massive attacks related to exposure from Argentina to the USA. In Brazil, more than 100,000 accidents were registered in the last 5 years with a total of 303 deaths. To treat such massive attacks, Brazilian researchers developed the first specific antivenom against Africanized honey bee sting exposure. This unique product, the first of its kind in the world, has been safely tested in 20 patients during a Phase 2 clinical trial. To develop the antivenom, a standardized process was undertaken to extract primary venom antigens from the Africanized bees for immunization of serum-producing horses. This process involved extracting, purifying, fractionating, characterizing, and identifying the venom (apitoxin) employing mass spectrometry to generate standardized antigen for hyperimmunization of horses using the major toxins (melittin and its isoforms and phospholipase A2). The current guide describes standardization of the entire production chain of venom antigens in compliance with good manufacturing practices (GMP) required by regulatory agencies. Emphasis is placed upon the welfare of bees and horses during this process, as well as the development of a new biopharmaceutical to ultimately save lives.
Bioactive alkaloids from the venom of Dendrobatoidea Cope, 1865: a scoping review
Bioactive compounds derived from secondary metabolism in animals have refined selectivity and potency for certain biological targets. The superfamily Dendrobatoidea is adapted to the dietary sequestration and secretion of toxic alkaloids, which play a role in several biological activities, and thus serve as a potential source for pharmacological and biotechnological applications. This article constitutes a scoping review to understand the trends in experimental research involving bioactive alkaloids derived from Dendrobatoidea based upon scientometric approaches. Forty-eight (48) publications were found in 30 journals in the period of 60 years, between 1962 and 2022. More than 23 structural classes of alkaloids were cited, with 27.63% for batrachotoxins, 13.64% for pyridinics, with an emphasis on epibatidine, 16.36% for pumiliotoxins, and 11.82% for histrionicotoxins. These tests included (54.9%), (39.4%), and simulations (5.6%). Most compounds (54.8%) were isolated from skin extracts, whereas the remainder were obtained through molecular synthesis. Thirteen main biological activities were identified, including acetylcholinesterase inhibitors (27.59%), sodium channel inhibitors (12.07%), cardiac (12.07%), analgesic (8.62%), and neuromuscular effects (8.62%). The substances were cited as being of natural origin in the "Dendrobatidae" family, genus "," "," and seven species: , , , , , , and . To date, only a few biological activities have been experimentally tested; hence, further studies on the bioprospecting of animal compounds and ecological approaches are needed.
Systemic health effects of noise exposure
Noise, any unwanted sound, is pervasive and impacts large populations worldwide. Investigators suggested that noise exposure not only induces auditory damage but also produces various organ system dysfunctions. Although previous reviews primarily focused on noise-induced cardiovascular and cerebral dysfunctions, this narrow focus has unintentionally led the research community to disregard the importance of other vital organs. Indeed, limited studies revealed that noise exposure impacts other organs including the liver, kidneys, pancreas, lung, and gastrointestinal tract. Therefore, the aim of this review was to examine the effects of noise on both the extensively studied organs, the brain and heart, but also determine noise impact on other vital organs. The goal was to illustrate a comprehensive understanding of the systemic effects of noise. These systemic effects may guide future clinical research and epidemiological endpoints, emphasizing the importance of considering noise exposure history in diagnosing various systemic diseases.
Buthionine sulfoximine and chemoresistance in cancer treatments: a systematic review with meta-analysis of preclinical studies
Buthionine sulfoximine (BSO) is a synthetic amino acid that blocks the biosynthesis of reduced glutathione (GSH), an endogenous antioxidant cellular component present in tumor cells. GSH levels have been associated with tumor cell resistance to chemotherapeutic drugs and platinum compounds. Consequently, by depleting GSH, BSO enhances the cytotoxicity of chemotherapeutic agents in drug-resistant tumors. Therefore, the aim of this study was to conduct a systematic review with meta-analysis of preclinical studies utilizing BSO in cancer treatments. The systematic search was carried out using the following databases: PubMed, Web of Science, Scopus, and EMBASE up until March 20, 2023, in order to collect preclinical studies that evaluated BSO, alone or in association, as a strategy for antineoplastic therapy. One hundred nine investigations were found to assess the cytotoxic potential of BSO alone or in combination with other compounds. Twenty-one of these met the criteria for performing the meta-analysis. The evidence gathered indicated that BSO alone exhibits cytotoxic activity. However, this compound is generally used in combination with other antineoplastic strategies, mainly chemotherapy ones, to improve cytotoxicity to carcinogenic cells and treatment efficacy. Finally, this review provides important considerations regarding BSO use in cancer treatment conditions, which might optimize future studies as a potential adjuvant antineoplastic therapeutic tool.
Drug induced liver injury - a 2023 update
Drug-Induced Liver Injury (DILI) constitutes hepatic damage attributed to drug exposure. DILI may be categorized as hepatocellular, cholestatic or mixed and might also involve immune responses. When DILI occurs in dose-dependent manner, it is referred to as intrinsic, while if the injury occurs spontaneously, it is termed as idiosyncratic. This review predominately focused on idiosyncratic liver injury. The established molecular mechanisms for DILI include (1) mitochondria dysfunction, (2) increased reactive oxygen species levels, (3) presence of elevated apoptosis and necrosis, (4) and bile duct injuries associated with immune mediated pathways. However, it should be emphasized that the underlying mechanisms responsible for DILI are still unknown. Prevention strategies are critical as incidences occur frequently, and treatment options are limited once the injury has developed. The aim of this review was to utilize retrospective cohort studies from across the globe to gain insight into epidemiological patterns. This review considers (1) what is currently known regarding the mechanisms underlying DILI, (2) discusses potential risk factors and (3) implications of the coronavirus pandemic on DILI presentation and research. Future perspectives are also considered and discussed and include potential new biomarkers, causality assessment and reporting methods.
Effects of green tea polyphenols against metal-induced genotoxic damage: underlying mechanistic pathways
This review is based upon evidence from the published effects of green tea polyphenols (GTP) on genotoxic damage induced by metals with carcinogenic potential. First, the relationship between GTP and antioxidant defense system is provided. Subsequently, the processes involved in the oxidative stress generated by metals and their relationship to oxidative DNA damage is examined. The review demonstrated that GTP generally decrease oxidative DNA damage induced by exposure to metals such as arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), iron (Fe), and lead (Pb). The pathways involved in these effects are related to: (1) direct scavenging of free radicals (FR); (2) activation of mechanisms to repair oxidative DNA damage; (3) regulation of the endogenous antioxidant system; and (4) elimination of cells with genetic damage via apoptosis. The results obtained in the studies reviewed demonstrate potential for possible use of GTP to prevent and treat oxidative damage in populations exposed to metals. Further, GTP may be considered as adjuvants to treatments for metal-associated diseases related to oxidative stress and DNA damage.
Continent-based systematic review of the short-term health impacts of wildfire emissions
This review systematically gathers and provides an analysis of pollutants levels emitted from wildfire (WF) and their impact on short-term health effects of affected populations. The available literature was searched according to Population, Exposure, Comparator, Outcome, and Study design (PECOS) database defined by the World Health Organization (WHO) and a meta-analysis was conducted whenever possible. Data obtained through PECOS characterized information from the USA, Europe, Australia, and some Asian countries; South American countries were seldom characterized, and no data were available for Africa and Russia. Extremely high levels of pollutants, mostly of fine fraction of particulate matter (PM) and ozone, were associated with intense WF emissions in North America, Oceania, and Asia and reported to exceed several-fold the WHO guidelines. Adverse health outcomes include emergency department visits and hospital admissions for cardiorespiratory diseases as well as mortality. Despite the heterogeneity among exposure and health assessment methods, all-cause mortality, and specific-cause mortality were significantly associated with WF emissions in most of the reports. Globally, a significant association was found for all-cause respiratory outcomes including asthma, but mixed results were noted for cardiovascular-related effects. For the latter, estimates were only significant several days after WF emissions, suggesting a more delayed impact on the heart. Different research gaps are presented, including the need for the application of standardized protocols for assessment of both exposure and adverse health risks. Mitigation actions also need to be strengthened, including dedicated efforts to communicate with the affected populations, to engage them for adoption of protective behaviors and measures.
Evaluation of the carcinogenicity of carbon tetrachloride
Carbon tetrachloride (CCl) has been extensively used and reported to produce toxicity, most notably involving the liver. Carbon tetrachloride metabolism involves CYP450-mediated bioactivation to trichloromethyl and trichloromethyl peroxy radicals, which are capable of macromolecular interaction with cell components including lipids and proteins. Radical interaction with lipids produces lipid peroxidation which can mediate cellular damage leading to cell death. Chronic exposure with CCl a rodent hepatic carcinogen with a mode of action (MOA) exhibits the following key events: 1) metabolic activation; 2) hepatocellular toxicity and cell death; 3) consequent regenerative increased cell proliferation; and 4) hepatocellular proliferative lesions (foci, adenomas, carcinomas). The induction of rodent hepatic tumors is dependent upon the dose (concentration and exposure duration) of CCl, with tumors only occurring at cytotoxic exposure levels. Adrenal benign pheochromocytomas were also increased in mice at high CCl exposures; however, these tumors are not of relevant importance to human cancer risk. Few epidemiology studies that have been performed on CCl, do not provide credible evidence of enhanced risk of occurrence of liver or adrenal cancers, but these studies have serious flaws limiting their usefulness for risk assessment. This manuscript summarizes the toxicity and carcinogenicity attributed to CCl, specifically addressing MOA, dose-response, and human relevance.