Experimental Hematology & Oncology

Crosstalk between O-GlcNAcylation and ubiquitination: a novel strategy for overcoming cancer therapeutic resistance
Sun K, Zhi Y, Ren W, Li S, Zheng J, Gao L and Zhi K
Developing resistance to cancer treatments is a major challenge, often leading to disease recurrence and metastasis. Understanding the underlying mechanisms of therapeutic resistance is critical for developing effective strategies. O-GlcNAcylation, a post-translational modification that adds GlcNAc from the donor UDP-GlcNAc to serine and threonine residues of proteins, plays a crucial role in regulating protein function and cellular signaling, which are frequently dysregulated in cancer. Similarly, ubiquitination, which involves the attachment of ubiquitin to to proteins, is crucial for protein degradation, cell cycle control, and DNA repair. The interplay between O-GlcNAcylation and ubiquitination is associated with cancer progression and resistance to treatment. This review discusses recent discoveries regarding the roles of O-GlcNAcylation and ubiquitination in cancer resistance, their interactions, and potential mechanisms. It also explores how targeting these pathways may provide new opportunities to overcome cancer treatment resistance in cancer, offering fresh insights and directions for research and therapeutic development.
New insights into CAR T-cell hematological toxicities: manifestations, mechanisms, and effective management strategies
Yang Y, Peng H, Wang J and Li F
Chimeric antigen receptor (CAR) T-cell therapy represents a highly efficacious treatment modality demonstrated to enhance outcomes in patients afflicted with malignancies, particularly those enduring relapsed or refractory hematological malignancies. However, the escalating adoption of CAR T-cell therapy has unveiled several life-threatening toxicities, notably cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), infections, and hematological toxicities (HTs), thereby hindering the broad implementation of CAR T-cell therapy. HTs encompass a spectrum of adverse effects, including cytopenias, hemophagocytic lymphohistiocytosis (HLH), coagulopathies, and B-cell aplasia. While our comprehension of the underlying mechanisms governing CRS and ICANS is advancing, the intricate pathophysiology of HTs remains inadequately elucidated. Such knowledge gaps may precipitate suboptimal therapeutic decisions, potentially culminating in substantial medical resource depletion and detriment to patients' quality of life. In this comprehensive review, based on recent updated findings, we delineate various mechanisms contributing to HTs subsequent to CAR T-cell therapy, explicate manifestations of HTs, and proffer strategic interventions to mitigate this relevant clinical challenge.
Nuclear porcupine mediates XRCC6/Ku70 S-palmitoylation in the DNA damage response
Chen Y, Xiao M, Mo Y, Ma J, Han Y, Li Q, Zeng Q, Boohaker RJ, Fried J, Li Y, Wang H and Xu B
The activation of the DNA damage response (DDR) heavily relies on post-translational modifications (PTMs) of proteins, which play a crucial role in the prevention of genetic instability and tumorigenesis. Among these PTMs, palmitoylation is a highly conserved process that is dysregulated in numerous cancer types. However, its direct involvement in the DDR and the underlying mechanisms remain unclear.
Prospective pharmacotyping of urothelial carcinoma organoids for drug sensitivity prediction - feasibility and real world experience
Melzer MK, Ma Y, Lindenmayer J, Morgenstern C, Wezel F, Zengerling F, Günes C, Gaisa NT, Kleger A and Bolenz C
Urothelial carcinoma (UC) of the urinary bladder has significant challenges in treatment due to its diverse genetic landscape and variable response to systemic therapy. In recent years, patient-derived organoids (PDOs) emerged as a novel tool to model primary tumors with higher resemblance than conventional 2D cell culture approaches. However, the potential of organoids to predict therapy response in a clinical setting remains to be evaluated. This study explores the clinical feasibility of PDOs for pharmacotyping in UC. Initially, we subjected tumor tissue specimens from 50 patients undergoing transurethral resection or radical cystectomy to organoid propagation, of whom 19 (38%) yielded PDOs suitable for drug sensitivity assessment. Notably, whole transcriptome-based analysis indicated that PDOs may show phenotypes distinct from their parental tumor tissue. Pharmacotyping within a clinically relevant timeframe [mean of 35.44 and 55 days for non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC), respectively] was achieved. Drug sensitivity analyses revealed marked differences between NMIBC and MIBC, with MIBC-derived organoids demonstrating higher chemosensitivity toward clinically relevant drugs. A case study correlating organoid response with patient treatment outcome illustrated the complexity of predicting chemotherapy efficacy, especially considering the rapid acquisition of drug resistance. We propose a workflow of prospective organoid-based pharmacotyping in UC, enabling further translational research and integration of this approach into clinical practice.
Targeting SPP1-orchestrated neutrophil extracellular traps-dominant pre-metastatic niche reduced HCC lung metastasis
Xie SZ, Yang LY, Wei R, Shen XT, Pan JJ, Yu SZ, Zhang C, Xu H, Xu JF, Zheng X, Wang H, Su YH, Sun HT, Lu L, Lu M, Zhu WW and Qin LX
The mechanisms by which tumor-derived factors remodel the microenvironment of target organs to facilitate cancer metastasis, especially organ-specific metastasis, remains obscure. Our previous studies have demonstrated that SPP1 plays a key role in promoting metastasis of hepatocellular carcinoma (HCC). However, the functional roles and mechanisms of tumor-derived SPP1 in shaping the pre-metastatic niche (PMN) and promoting lung-specific metastasis are unclear.
High-throughput screening for optimizing adoptive T cell therapies
Zhang Y, Xu Q, Gao Z, Zhang H, Xie X and Li M
Adoptive T cell therapy is a pivotal strategy in cancer immunotherapy, demonstrating potent clinical efficacy. However, its limited durability often results in primary resistance. High-throughput screening technologies, which include both genetic and non-genetic approaches, facilitate the optimization of adoptive T cell therapies by enabling the selection of biologically significant targets or substances from extensive libraries. In this review, we examine advancements in high-throughput screening technologies and their applications in adoptive T cell therapies. We highlight the use of genetic screening for T cells, tumor cells, and other promising combination strategies, and elucidate the role of non-genetic screening in identifying small molecules and targeted delivery systems relevant to adoptive T cell therapies, providing guidance for future research and clinical applications.
Natural killer cell biology and therapy in multiple myeloma: challenges and opportunities
Bisht K, Merino A, Igarashi R, Gauthier L, Chiron M, Desjonqueres A, Smith E, Briercheck E, Romee R, Alici E, Vivier E, O'Dwyer M and van de Velde H
Despite therapeutic advancements, multiple myeloma (MM) remains incurable. NK cells have emerged as a promising option for the treatment of MM. NK cells are heterogenous and typically classified based on the relative expression of their surface markers (e.g., CD56 and CD16a). These cells elicit an antitumor response in the presence of low mutational burden and without neoantigen presentation via germline-encoded activating and inhibitory receptors that identify the markers of transformation present on the MM cells. Higher NK cell activity is associated with improved survival and prognosis, whereas lower activity is associated with advanced clinical stage and disease progression in MM. Moreover, not all NK cell phenotypes contribute equally toward the anti-MM effect; higher proportions of certain NK cell phenotypes result in better outcomes. In MM, the proportion, phenotype, and function of NK cells are drastically varied between different disease stages; this is further influenced by the bone marrow microenvironment, proportion of activating and inhibitory receptors on NK cells, expression of homing receptors, and bone marrow hypoxia. Antimyeloma therapies, such as autologous stem cell transplant, immunomodulation, proteasome inhibition, and checkpoint inhibition, further modulate the NK cell landscape in the patients. Thus, NK cells can naturally work in tandem with anti-MM therapies and be strategically modulated for improved anti-MM effect. This review article describes immunotypic and phenotypic differences in NK cells along with the functional changes in homeostatic and malignant states and provides expert insights on strategies to harness the potential of NK cells for improving outcomes in MM.
Malignant pleural effusion facilitates the establishment and maintenance of tumor organoid biobank with multiple patient-derived lung tumor cell sources
Wang L, Yu Y, Fang Y, Li Y, Yu W, Wang Z, Lv J, Wang R and Liang S
The Patient-Derived Organoids (PDOs) has demonstrated significant potential in personalized medicine. However, the initial establishment of lung cancer organoids (LCOs), and timely therapeutic recommendations face several challenges. Particularly, the current culture systems have not yet achieved the capability to long-term cultivation of all lung tumor sample sources, including malignant pleural effusion (MPE), which poses significant barriers to the rapid clinical translation of PDOs. Here, we established a LCOs biobank derived from various tumor cell origins and investigated the impact of supplementing culture media with MPE supernatant on organoid formation, culture duration, and drug sensitivity. Our findings indicate that MPE can enhance the successful rate of LCOs by extending the passage number and promoting the initial formation of difficult-to-culture samples, such as those derived from MPE or cell lines that were previously unsuccessful in Airway Organoid (AO) medium. MPE also facilitates the rapid proliferation of LCOs, reducing the culture duration by over 50%. Additionally, LCOs exhibit increased chemoresistance in the presence of MPE, which modifies stem cell distribution and reshapes the internal structure of the organoids. Overall, this study highlights the significance of MPE in facilitating the establishment and maintenance of LCOs, and its potential for translational applications in lung cancer research and personalized.
CUL4A-DDB1-circRFWD2 E3 ligase complex mediates the ubiquitination of p27 to promote multiple myeloma proliferation
Min J, Mao J, Shi H, Peng Y, Xu X, Guo M, Tang X, Yang Y and Gu C
Multiple myeloma (MM) is an incurable disease characterized by the abnormal expansion of plasma cells in the bone marrow (BM). Numerous studies have shown that BM tumor cells can influence the tumor microenvironment (TME) through communication with extracellular vesicle circular RNAs (circRNAs), a type of noncoding RNA. Our study revealed that a circular RNA, circRFWD2 (hsa_circ_0015361), is expressed by MM cells and translated into a new protein, circRFWD2_369aa. We found that elevated levels of circRFWD2_369aa in MM peripheral blood samples were closely associated with poor outcomes in MM patients. Further investigation revealed that circRFWD2 promoted the degradation of p27 through the ubiquitination pathway, leading to increased proliferation of MM cells. We also confirmed the interaction between circRFWD2 and its downstream genes DDB1 and CUL4A, indicating that circRFWD2 could form an E3 ligase complex with other genes to mediate the ubiquitination of p27. Notably, the protein translated by a circular RNA of RFWD2 can also function as an E3 ligase. Our study highlights the potential of circRFWD2 as a biomarker for MM, which may improve the sensitivity and specificity of diagnosis and efficacy analyses.
Vertical targeting of the PI3K/AKT pathway at multiple points is synergistic and effective for non-Hodgkin lymphoma
Kupcova K, Senavova J, Jura F, Herman V, Rajmonova A, Pacheco-Blanco M, Chrbolkova T, Hamova I, Davis RE and Havranek O
The phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) signaling pathway is critically active in many cell types, both normal and neoplastic. Many small-molecule inhibitors targeting different levels of the PI3K/AKT pathway have been developed for cancer therapy, but their efficacy is reduced by compensatory pathway re-activation mechanisms, and their tolerability by toxic side effects. We studied this problem using cell lines representing diffuse large B-cell lymphoma (SUDHL-4 and OCI-Ly7), a genetically-encoded live-cell reporter of AKT activity, and 3 small-molecule inhibitors targeting different levels of the pathway: idelalisib (PI3Kδ), GSK2334470 (PDPK1), and ipatasertib (AKT). Half-maximal (IC50) concentrations of these inhibitors for AKT activity inhibition at 1 h, when used individually, were much lower than their IC50 values for reduction of viable cell number after 4 days. Time-course studies explained this discrepancy: AKT activity in the continuous presence of the inhibitors returned to normal after 24 h, and was supranormal after inhibitor removal. Combining all 3 inhibitors produced sustained inhibition of AKT activity, was broadly synergistic at reducing viable cell number, enabled substantially lower doses of each inhibitor to be used, and was enhanced further by the mTOR inhibitor rapamycin. Moreover, combined PDPK1 and AKT inhibition showed synergy with multiple different PI3K inhibitors. In a syngeneic mouse cell line model of lymphoma (A20), the triple combination showed antitumor activity and no evidence of toxicity. Our findings provide proof of concept suggesting further study of the safety and efficacy of low-dose multilevel PI3K/AKT pathway inhibition, for lymphoma and perhaps other cancers.
Chimeric antigen receptor-T cell therapy for T cell-derived hematological malignancies
Zheng H, Zhao H, Han S, Kong D, Zhang Q, Zhang M, Chen Y, Zhang M, Hu Y and Huang H
Relapsed/refractory T cell-derived malignancies present with high heterogeneity and poor prognoses. Recently, chimeric antigen receptor (CAR)-T cell therapy has shown remarkable safety and efficacy in the treatment of B cell-derived malignancies. However, the treatment of CAR-T cells in T cell-derived malignancies has more limitations, such as fratricide, T cell aplasia, and tumor contamination, mainly because of the similarity between normal and malignant T cells. Pan-T antigen CAR-T cells (such as CD5 and CD7 targets), the most widely used CAR-T cells in clinical trials, can cover almost all T cell-derived malignant cells but can also induce severe killing of CAR-T cells and normal T cells. Compared to autologous sources of CAR-T cells, allogeneic CAR-T cells can prevent tumor contamination and become universal products by gene-editing. However, none of these CAR-T cells could completely prevent immune deficiency and disease relapse after T-targeted CAR-T cell therapy. In this review, we summarize the current challenges of CAR-T cell therapy for T cell-derived malignancies in clinical practice and potential strategies to address these limitations.
Preclinical investigations and a first-in-human phase 1a trial of JS007, a novel anti-CTLA-4 antibody, in patients with advanced solid tumors
Zhou C, Jiang J, Xiang X, Liu H, Wu G, Zeng R, Lu T, Zhang M, Shen Y, Hong M and Zhang J
Blocking cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) shows substantial antitumor efficacy. Here, we report the preclinical data and outcomes of a first-in-human phase 1a trial of JS007, a novel anti-CTLA-4 antibody, in advanced solid tumors.
AXL as immune regulator and therapeutic target in Acute Myeloid Leukemia: from current progress to novel strategies
Vandewalle N, De Beule N, De Becker A, De Bruyne E, Menu E, Vanderkerken K, Breckpot K, Devoogdt N and De Veirman K
Until recently, treatment options for patients diagnosed with Acute Myeloid Leukemia (AML) were limited and predominantly relied on various combinations, dosages, or schedules of traditional chemotherapeutic agents. Patients with advanced age, relapsed/refractory disease or comorbidities were often left without effective treatment options. Novel advances in the understanding of leukemogenesis at the molecular and genetic levels, alongside recent progress in drug development, have resulted in the emergence of novel therapeutic agents and strategies for AML patients. Among these innovations, the receptor tyrosine kinase AXL has been established as a promising therapeutic target for AML. AXL is a key regulator of several cellular functions, including epithelial-to-mesenchymal transition in tumor cells, immune regulation, apoptosis, angiogenesis and the development of chemoresistance. Clinical studies of AXL inhibitors, as single agents and in combination therapy, have demonstrated promising efficacy in treating AML. Additionally, novel AXL-targeted therapies, such as AXL-specific antibodies or antibody fragments, present potential solutions to overcome the limitations associated with traditional small-molecule AXL inhibitors or multikinase inhibitors. This review provides a comprehensive overview of the structure and biological functions of AXL under normal physiological conditions, including its role in immune regulation. We also summarize AXL's involvement in cancer, with a specific emphasis on its role in the pathogenesis of AML, its contribution to immune evasion and drug resistance. Moreover, we discuss the AXL inhibitors currently undergoing (pre)clinical evaluation for the treatment of AML.
Combined inhibition of MET and VEGF enhances therapeutic efficacy of EGFR TKIs in EGFR-mutant non-small cell lung cancer with concomitant aberrant MET activation
Huang S, Long Y, Gao Y, Lin W, Wang L, Jiang J, Yuan X, Chen Y, Zhang P and Chu Q
Aberrant activation of mesenchymal epithelial transition (MET) has been considered to mediate primary and acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant non-small cell lung cancer (NSCLC). However, mechanisms underlying this process are not wholly clear and the effective therapeutic strategy remains to be determined.
Natural killer cell-based cancer immunotherapy: from basics to clinical trials
Shi Y, Hao D, Qian H and Tao Z
Cellular immunotherapy exploits the capacity of the human immune system in self-protection and surveillance to achieve the anti-tumor effects. Natural killer (NK) cells are lymphocytes of innate immune system and they display a unique inherent ability to identify and eliminate tumor cells. In this review, we first introduce the basic characteristics of NK cells in the physiological and pathological milieus, followed by a discussion of their effector function and immunosuppression in the tumor microenvironment. Clinical strategies and reports regarding NK cellular therapy are analyzed in the context of tumor treatment, especially against solid tumors. Given the widely studied T-cell therapy in the recent years, particularly the chimeric antigen receptor (CAR) T-cell therapy, we compare the technical features of NK- and T-cell based tumor therapies at the clinical front. Finally, the technical challenges and potential solutions for both T and NK cell-based immunotherapies in treating tumor malignancies are delineated. By overviewing its clinical applications, we envision the NK-cell based immunotherapy as an up-and-comer in cancer therapeutics.
CD19/CD22 CAR-T-cell cocktail therapy following autologous transplantation is an optimizing strategy for treating relapsed/refractory central nervous system lymphoma
Zhou X, Yu Q, Dai Z, Wang J, Li C, Huang L, Zhang Y and Cao Y
Relapsed/refractory (R/R) primary and secondary central nervous system lymphomas (PCNSL, SCNSL) are associated with short survival and represent an unmet need, requiring novel effective strategies. We retrospectively compared the safety and efficacy of CD19/22 CAR-T-cell therapy following ASCT (ASCT + CAR-T group), CD19/22 CAR-T-cell cocktail therapy (CAR-T group) and chemoimmunotherapy (CIT group) in treating R/R CNSL patients. Analysis of the differences in clinical characteristics among the three groups revealed that the median age in the CIT group was older than that in the ASCT + CAR-T group and CAR-T group, and the median number of prior lines of therapy in the CIT group was less than that in the other groups. Patients in the two CAR-T-therapy groups exhibited comparable incidences and severities of CRS and ICANS. Grade 4-5 CRS and ICANS were not observed in either CAR-T-cell therapy group. The incidence of Grade 3/4 hematological toxicity in the ASCT + CAR-T and CAR-T groups was greater than that in the CIT group. The ORR was 82.75% in the ASCT + CAR-T group, 60.00% in the CAR-T group and 58.83% in the CIT group. As of December 31, 2022, the median follow-up after therapy was 16.73 months (range, 0.67-42.00 months). The median durations of PFS and OS were not reached in the ASCT + CAR-T group. The median PFS in the CAR-T group was 4.72 months, and OS was not reached. In the CIT group, the median PFS and OS were 6.63 months and 16.77 months, respectively. The 2-year PFS rate of patients in the ASCT + CAR-T group (65.52%) was significantly greater than that of patients in the CAR-T group (30.00%, P = 0.0321) and CIT group (23.53%, P = 0.0043). Our results support the development of CAR-T-cell therapy for R/R CNSL. With the durability of remission and low toxicity, ASCT combined with CAR-T-cell therapy appears to be a more effective and safer treatment option for primary and secondary R/R CNS lymphoma.
CRISPR/Cas9 technology for advancements in cancer immunotherapy: from uncovering regulatory mechanisms to therapeutic applications
Feng X, Li Z, Liu Y, Chen D and Zhou Z
In recent years, immunotherapy has developed rapidly as a new field of tumour therapy. However, the efficacy of tumour immunotherapy is not satisfactory due to the immune evasion mechanism of tumour cells, induction of immunosuppressive tumour microenvironment (TME), and reduction of antigen delivery, etc. CRISPR/Cas9 gene editing technology can accurately modify immune and tumour cells in tumours, and improve the efficacy of immunotherapy by targeting immune checkpoint molecules and immune regulatory genes, which has led to the great development and application. In current clinical trials, there are still many obstacles to the application of CRISPR/Cas9 in tumour immunotherapy, such as ensuring the accuracy and safety of gene editing, overcoming overreactive immune responses, and solving the challenges of in vivo drug delivery. Here we provide a systematic review on the application of CRISPR/Cas9 in tumour therapy to address the above existing problems. We focus on CRISPR/Cas9 screening and identification of immunomodulatory genes, targeting of immune checkpoint molecules, manipulation of immunomodulators, enhancement of tumour-specific antigen presentation and modulation of immune cell function. Second, we also highlight preclinical studies of CRISPR/Cas9 in animal models and various delivery systems, and evaluate the efficacy and safety of CRISPR/Cas9 technology in tumour immunotherapy. Finally, potential synergistic approaches for combining CRISPR/Cas9 knockdown with other immunotherapies are presented. This study underscores the transformative potential of CRISPR/Cas9 to reshape the landscape of tumour immunotherapy and provide insights into novel therapeutic strategies for cancer patients.
Optimizing CD8 T cell-based immunotherapy via metabolic interventions: a comprehensive review of intrinsic and extrinsic modulators
Zhou Z, Zheng J, Lu Y, Mai Z, Lin Y, Lin P, Zheng Y, Chen X, Xu R, Zhao X and Cui L
CD8 T cells are integral to the effective management of cancer and infectious diseases due to their cytotoxic functions. The efficacy of these cells is profoundly influenced by their metabolic state, which regulates their activation, differentiation, and longevity. Accordingly, the modulation of metabolic pathways within CD8 T cells is crucial for enhancing the effectiveness of T cell-based immunotherapy. Precise metabolic control is paramount in optimizing therapeutic outcomes and minimizing potential toxicities associated with treatment. Importantly, the potential of exogenous metabolites to augment CD8 T cell responses is critically evaluated, especially through in vivo evidence that underscores their therapeutic promise. This review also addresses current challenges, including the need for precise control of metabolic modulation to avoid adverse effects, the development of targeted delivery systems to ensure efficient metabolite delivery to CD8 T cells, and the inherent variability of metabolic states among patients that may influence treatment outcomes. Addressing these hurdles will be crucial for the successful integration of metabolic interventions into established immunotherapeutic regimens.
Targeting CD5 chimeric antigen receptor-engineered natural killer cells against T-cell malignancies
Zu Y, Ren Q, Zhang J, Su H, Lu Q, Song Y and Zhou J
Chimeric antigen receptor engineered T cells (CAR-T) have demonstrated promising clinical efficacy in B-cell malignancies, and the approach has been extended to T-cell malignancies. However, the use of allogeneic T cells in CAR therapy poses a challenge due to the risk of graft-versus-host disease. Recently, natural killer (NK) cells have exhibited "off‑the‑shelf" availability. The nanobody-based CAR structures have attracted much attention for their therapeutic potential owing to the advantages of nanobody, including small size, optimal stability, high affinity and manufacturing feasibility. CD5, a common surface marker of malignant T cells, has three scavenger receptor cysteine-rich domains (D1-D3) in the extracellular region. The present study aims to construct "off‑the‑shelf" CAR-NK cells targeting the membrane-proximal domain of CD5 derived from nanobody against T-cell malignancies.
Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH and Hou J
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Spatial immunogenomic patterns associated with lymph node metastasis in lung adenocarcinoma
Meng F, Li H, Jin R, Yang A, Luo H, Li X, Wang P, Zhao Y, Chervova O, Tang K, Cheng S, Hu B, Li Y, Sheng J, Yang F, Carbone D, Chen K and Wang J
Lung adenocarcinoma (LUAD) with lymph node (LN) metastasis is linked to poor prognosis, yet the underlying mechanisms remain largely undefined. This study aimed to elucidate the immunogenomic landscape associated with LN metastasis in LUAD.