Understanding the role of biomolecular coronas in human exposure to nanomaterials
Nanomaterials (NMs) are increasingly used in medical treatments, electronics, and food additives. However, nanosafety-the possible adverse effects of NMs on human health-is an area of active research. This review provides an overview of the influence of biomolecular coronas on NM transformation following various exposure routes. We discuss potential exposure pathways, including inhalation and ingestion, describing the physiology of exposure routes and emphasising the relevance of coronas in these environments. Additionally, we review other routes to NM exposure, such as synovial fluid, blood (translocation and injection), dermal and ocular exposure, as well as the dose and medium impact on NM interactions. We emphasize the need for an in-depth characterisation of coronas in different biological media, highlighting the need and opportunity to study lung and gastric fluids to understand NM behaviour and potential toxicity. Future research aims to predict better outcomes and address the complexities of NM interactions with biological systems.
Correction: FeS colloids - formation and mobilization pathways in natural waters
[This corrects the article DOI: 10.1039/C9EN01427F.].
Nanocarrier foliar uptake pathways affect delivery of active agents and plant physiological response
Layered double hydroxide (LDH) nanoparticles enable foliar delivery of genetic material, herbicides, and nutrients to promote plant growth and yield. Understanding the foliar uptake route of nanoparticles is needed to maximize their effectiveness and avoid unwanted negative effects. In this study, we investigated how delivering layered double hydroxide ( = 37 ± 1.5 nm) through the adaxial (upper) or abaxial (lower) side of leaves affects particle uptake, nutrient delivery, and photosynthesis in tomato plants. LDH applied on the adaxial side was embedded in the cuticle and accumulated at the anticlinal pegs between epidermal cells. On the abaxial side, LDH particles penetrated the cuticle less, but the presence of the stomata enables penetration to deeper leaf layers. Accordingly, the average penetration levels of LDH relative to the cuticle were 2.47 ± 0.07, 1.25 ± 0.13, and 0.75 ± 0.1 μm for adaxial, abaxial with stomata, and abaxial without stomata leaf segments, respectively. In addition, the colocalization of LDH with the cuticle was ∼2.3 times lower for the adaxial application, indicating the ability to penetrate the cuticle. Despite the low adaxial stomata density, LDH-mediated delivery of magnesium (Mg) from leaves to roots was 46% higher for the adaxial than abaxial application. In addition, adaxial application leads to ∼24% higher leaf CO assimilation rate and higher biomass accumulation. The lower efficiency from the abaxial side was, at least partially, a result of interference with the stomata functionality which reduced stomatal conductance and evapotranspiration by 28% and 25%, respectively, limiting plant photosynthesis. This study elucidates how foliar delivery pathways through different sides of the leaves affect their ability to deliver active agents into plants and consequently affect the plants' physiological response. That knowledge enables a more efficient use of nanocarriers for agricultural applications.
Diatom-derived extracellular polymeric substances form eco-corona and enhance stability of silver nanoparticles
Silver nanoparticles (nAg) are extensively used across various fields and are frequently introduced into aquatic environments, where their behavior depends on environmental conditions. Extracellular polymeric substances (EPS) derived from aquatic organisms, such as diatoms, could play an important yet to be explored role in shaping the fate of nAg in aquatic environments. This study investigates the interactions between EPS, particularly those from the diatom , and citrate-coated nAg. The main objective is to understand how EPS influence the behaviours of nAg in freshwater settings, in terms of modulation of the nAg surface properties, colloidal stability and dissolution. To achieve these objectives a combination of the state-of-the-art spectroscopic and imaging techniques was employed. nAg was incubated with EPS isolated from an axenic culture, and their interactions were explored in a simulated freshwater environment over both short-term (0-2 h) and long-term (0-72 h) periods. The study focused on the changes in nAg, examining surface modulation, colloidal stability, dissolution, EPS adsorption on nAg, and the resulting eco-corona formation. The results indicate that EPS enhance the colloidal stability of nAg and decrease their dissolution in synthetic freshwater by adsorbing onto their surface and inducing steric repulsion between nAg particles. Visualization of the eco-corona formed by diatom EPS on nAg and its impact on aggregation processes is achieved through transmission electron microscopy. The formation of the EPS corona is attributed to the presence of diverse biopolymers within EPS, particularly proteins and polysaccharides. Fluorescence quenching studies on protein fluorophores demonstrate the formation, through hydrophobic interactions, of protein-nAg complex, further confirmed by AF4-DAD-FLD-ICP-MS. In a broader context, the results of this mechanistic study imply that diatoms, through the release of EPS, may significantly influence the destiny and possibly the bioavailability of nAg in EPS-abundant aquatic environments.
methodology for engineered nanomaterial categorization according to number, nature and oxidative potential of reactive surface sites
Methanol probe chemisorption quantifies the number of reactive sites at the surface of engineered nanomaterials, enabling normalization per reactive site in reactivity and toxicity tests, rather than per mass or physical surface area. Subsequent temperature-programmed surface reaction (TPSR) of chemisorbed methanol identifies the reactive nature of surface sites (acidic, basic, redox or combination thereof) and their reactivity. Complementary to the methanol assay, a dithiothreitol (DTT) probe oxidation reaction is used to evaluate the oxidation capacity. These acellular approaches to quantify the number, nature, and reactivity of surface sites constitute a new approach methodology (NAM) for site-specific classification of nanomaterials. As a proof of concept, CuO, CeO, ZnO, FeO, CuFeO, CoO and two TiO nanomaterials were probed. A harmonized reactive descriptor for ENMs was obtained: the DTT oxidation rate per reactive surface site, or oxidative turnover frequency (OxTOF). CuO and CuFeO ENMs exhibit the largest reactive site surface density and possess the highest oxidizing ability in the series, as estimated by the DTT probe reaction, followed by CeO NM-211 and then titania nanomaterials (DT-51 and NM-101) and FeO. DTT depletion for ZnO NM-110 was associated with dissolved zinc ions rather than the ZnO particles; however, the basic characteristics of the ZnO NM-110 particles were evidenced by methanol TPSR. These acellular assays allow ranking the eight nanomaterials into three categories with statistically different oxidative potentials: CuO, CuFeO and CoO are the most reactive; ceria exhibits a moderate reactivity; and iron oxide and the titanias possess a low oxidative potential.
Uptake and physiological impacts of nanoplastics in trees with divergent water use strategies
Anthropogenic contaminants can place significant stress on vegetation, especially when they are taken up into plants. Plastic pollution, including nanoplastics (NPs), could be detrimental to tree functioning, by causing, for example, oxidative stress or reducing photosynthesis. While a number of studies have explored the capacity of plants to take up NPs, few have simultaneously assessed the functional damage due to particulate matter uptake. To quantify NPs uptake by tree roots and to determine whether this resulted in subsequent physiological damage, we exposed the roots of two tree species with different water use strategies in hydroponic cultures to two concentrations (10 mg L and 30 mg L) of model metal-doped polystyrene NPs. This approach allowed us to accurately quantify low concentrations of NPs in tissues using standard approaches for metal analysis. The two contrasting tree species included Norway spruce ( [L.] Karst), a water conservative tree, and wild service tree ( [L.] Crantz), an early successional tree with a rather water spending strategy. At both exposure concentrations and at each of the experimental time points (two and four weeks), NPs were highly associated and/or concentrated inside the tree roots. In both species, maximum concentrations were observed after 2 weeks in the roots of the high concentration (HC) treatment (spruce: 2512 ± 304 μg NPs per g DW (dry weight), wild service tree: 1190 ± 823 μg NPs per g DW). In the aboveground organs (stems and leaves or needles), concentrations were one to two orders of magnitude lower than in the roots. Despite relatively similar NPs concentrations in the tree aboveground organs across treatments, there were different temporal impacts on tree physiology of the given species. Photosynthetic efficiency was reduced faster (after 2 weeks of NPs exposure) and more intensively (by 28% in the HC treatment) in wild service trees compared to Norway spruce ( 10% reduction only after 4 weeks). Our study shows that both, evergreen coniferous as well as deciduous broadleaf tree species are negatively affected in their photosynthesis by NPs uptake and transport to aboveground organs. Given the likelihood of trees facing multiple, concurrent stressors from anthropogenic pollution and climate change, including the impact of NPs, it is crucial to consider the cumulative effects on vegetation in future.
The pulmonary effects of nickel-containing nanoparticles: Cytotoxicity, genotoxicity, carcinogenicity, and their underlying mechanisms
With the exponential growth of the nanotechnology field, the global nanotechnology market is on an upward track with fast-growing jobs. Nickel (Ni)-containing nanoparticles (NPs), an important class of transition metal nanoparticles, have been extensively used in industrial and biomedical fields due to their unique nanostructural, physical, and chemical properties. Millions of people have been/are going to be exposed to Ni-containing NPs in occupational and non-occupational settings. Therefore, there are increasing concerns over the hazardous effects of Ni-containing NPs on health and the environment. The respiratory tract is a major portal of entry for Ni-containing NPs; thus, the adverse effects of Ni-containing NPs on the respiratory system, especially the lungs, have been a focus of scientific study. This review summarized previous studies, published before December 1, 2023, on cytotoxic, genotoxic, and carcinogenic effects of Ni-containing NPs on humans, lung cells , and rodent lungs , and the potential underlying mechanisms were also included. In addition, whether these adverse effects were induced by NPs themselves or Ni ions released from the NPs was also discussed. The extra-pulmonary effects of Ni-containing NPs were briefly mentioned. This review will provide us with a comprehensive view of the pulmonary effects of Ni-containing NPs and their underlying mechanisms, which will shed light on our future studies, including the urgency and necessity to produce engineering Ni-containing NPs with controlled and reduced toxicity, and also provide the scientific basis for developing nanoparticle exposure limits and policies.
Mining, refining, and QSAR analysing the nanoinformatics in EPA NaKnowBase
Concerns about the safety of manufacturing and using engineered nanomaterials (ENMs) have been increasing as the technology continues to expand. Efforts have been underway to investigate the potentially harmful effects of ENMs without carrying out the challenging empirical studies. To make such investigations possible, the US EPA Office of Research and Development (ORD) developed the nanomaterial database NaKnowBase (NKB) containing the detail of hundreds of assays conducted and published by ORD scientists experimentally investigating the environmental health and safety effects of ENMs (nanoEHS). This article describes specifics of the effort to mine, refine, and analyse the NKB. Here we use a quantitative structure activity relationship (QSAR) analysis, using a random forest of decision trees to predict the cell viability effects that occur upon exposure to ENMs that are similar in composition and structure and implement a set of laboratory conditions. These predictions are confirmed using the Jaqpot cloud platform developed by the National Technical University of Athens, Greece (NTUA) where nanoEHS effects are investigated with scientists working together globally.
Precursor- and waste-free synthesis of spark-ablated nanoparticles with enhanced photocatalytic activity and stability towards airborne organic pollutant degradation
Photocatalyst synthesis typically involves multiple steps, expensive precursors, and solvents. In contrast, spark ablation offers a simple process of electrical discharges in a gap between two electrodes made from a desirable material. This enables a precursor- and waste-free generation of pure metal oxide nanoparticles or mixtures of various compositions. This study presents a two-step method for the production of photocatalytic filters with deposited airborne MnO, TiO, and ZnO nanoparticles using spark ablation and calcination processes. The resulting MnO and TiO filters demonstrated almost twice the activity with outstanding performance stability, as compared to sol-gel MnO and commercial TiO. The introduced method is not only simple, precursor- and waste-free, and leads to superior performance for the case studied, but it also has future potential due to its versatility. It can easily produce mixed and doped materials with further improved properties, making it an interesting avenue for future research.
Submicron- and nanoplastic detection at low micro- to nanogram concentrations using gold nanostar-based surface-enhanced Raman scattering (SERS) substrates
The presence of submicron- (1 μm-100 nm) and nanoplastic (<100 nm) particles within various sample matrices, ranging from marine environments to foods and beverages, has become a topic of increasing interest in recent years. Despite this interest, very few analytical techniques are known that allow for the detection of these small plastic particles in the low concentration ranges that they are anticipated to be present at. Research focused on optimizing surface-enhanced Raman scattering (SERS) to enhance signal obtained in Raman spectroscopy has been shown to have great potential for the detection of plastic particles below conventional resolution limits. In this study, we produce SERS substrates composed of gold nanostars and assess their potential for submicron- and nanoplastic detection. The results show 33 nm polystyrene could be detected down to 1.25 μg mL while 36 nm poly(ethylene terephthalate) was detected down to 5 μg mL. These results confirm the promising potential of the gold nanostar-based SERS substrates for nanoplastic detection. Furthermore, combined with findings for 121 nm polypropylene and 126 nm polyethylene particles, they highlight potential differences in analytical performance that depend on the properties of the plastics being studied.
Nature-Derived Gelatin-Based Antifungal Nanotherapeutics for combatting Biofilms
Infections caused by fungi are emerging global health challenges that are exacerbated by the formation of fungal biofilms. Further challenges arise from environmental contamination with antifungal agents, which promotes environmental acquisition of antifungal resistance. We report the generation of an efficient, sustainable, all-natural antifungal nanotherapeutic based on the integration of an antimicrobial natural essential oil into a gelatin-based nanoemulsion platform. Carvacrol-loaded gelatin nanoemulsions penetrated biofilms, resulting in death of cells in biofilms, and displayed selective biofilm elimination without harmful effects on fibroblast cells in a fungal biofilm-mammalian fibroblast co-culture model. Furthermore, the nanoemulsions degraded in the presence of physiologically relevant biomolecules, reducing the potential for environmental pollution and ecotoxicity. Overall, the sustainability, and efficacy of the described gelatin nanoemulsion formulation provides an environmentally friendly strategy for treating biofilm-associated fungal infections, including those caused by drug-resistant fungi.
Colloidal stabilization of hydrophobic InSe 2D nanosheets in a model environmental aqueous solution and their impact on MR-1
Semiconductor InSe 2D nanomaterials have emerged as potential photoresponsive materials for broadly distributed photodetectors and wearable electronics technologies due to their high photoresponsivity and thermal stability. This paper addresses an environmental concern about the fate of InSe 2D nanosheets when disposed and released into the environment after use. Semiconducting materials are potentially reactive and often form environmentally damaging species, for example reactive oxygen and nitrogen species, when degraded. InSe nanosheets are prepared using a semi bottom-up approach which involves a reaction between indium and selenium precursors at elevated temperature in an oxygen-free environment to prevent oxidation. InSe nanosheets are formed as a stable intermediate with micrometer-sized lateral dimensions and a few monolayer thickness. The InSe 2D nanosheets are obtained when the reaction is stopped after 30 minutes by cooling. Keeping the reaction at elevated temperature for a longer period, for example 60 minutes leads to the formation of InSe 3D nanoparticles of about 5 nm in diameter, a thermodynamically more stable form of InSe. The paper focuses on the colloidal stabilization of InSe nanosheets in an aqueous solution that contains epigallocatechin gallate (EGCG), a natural organic matter (NOM) simulant. We show that EGCG coats the surface of the hydrophobic, water-insoluble InSe nanosheets physisorption. The formed EGCG-coated InSe nanosheets are colloidally stable in aqueous solution. While unmodified semiconducting InSe nanosheets could produce reactive oxygen species (ROS) when illuminated, our study shows low levels of ROS generation by EGCG-coated InSe nanosheets under ambient light, which might be attributed to ROS quenching by EGCG. Growth-based viability (GBV) assays show that the colloidally stable EGCG-coated InSe nanosheets adversely impact the bacterial growth of MR-1, an environmentally relevant Gram-negative bacterium in aqueous media. The impact on bacterial growth is driven by the EGCG coating of the nanosheets. In addition, live/dead assays show insignificant membrane damage of the MR-1 cells by InSe nanosheets, suggesting a weak association of EGCG-coated nanosheets with the cells. It is likely that the adverse impact of EGCG-coated nanosheets on bacterial growth is the result of increasing local concentration of EGCG either when adsorbed on the nanosheets when the nanosheets interact with the cells, or when desorbed from the EGCG-coated nanosheets to interact with the bacterial cells.
House Dust Mite Extract Forms a Der p 2 Corona on Multi-Walled Carbon Nanotubes: Implications for Allergic Airway Disease
Multi-walled carbons nanotubes (MWCNTs) are used in materials for the construction, automotive, and aerospace industries. Workers and consumers are exposed to these materials via inhalation. Existing recommended exposure limits are based on MWCNT exposures that do not take into account more realistic co-exposures. Our goal was to understand how a common allergen, house dust mites, interacts with pristine MWCNTs and lung fluid proteins. We used gel electrophoresis, western blotting, and proteomics to characterize the composition of the allergen corona formed from house dust mite extract on the surface of MWCNTs. We found that the corona is dominated by der p 2, a protein associated with human allergic responses to house dust mites. Der p 2 remains adsorbed on the surface of the MWCNTs following subsequent exposures to lung fluid proteins. The high concentration of der p 2, localized on surface of MWCNTs, has important implications for house dust mite-induced allergies and asthma. This research provides a detailed characterization of the complex house dust mite-lung fluid protein coronas for future cellular and studies. These studies will help to address the molecular and biochemical mechanisms underlying the exacerbation of allergic lung disease by nanomaterials.
Development of single-cell ICP-TOFMS to measure nanoplastics association with human cells
Nanoplastics, solid polymer particles smaller than 1 μm, are suspected to be widely present in the environment, food and air, and may pose a potential threat to human health. Detecting nanoplastics in and associated with individual cells is crucial to understand their mechanisms of toxicity and potential harm. In this context, we developed a single-cell inductively coupled plasma time-of-flight mass spectrometry (sc-ICP-TOFMS) method for the sensitive and rapid quantification of metal-doped model nanoplastics in human cells. By providing multi-elemental fingerprints of both the nanoplastics and the cells, this approach can be advantageous in laboratory toxicological studies as it allows for the simultaneous acquisition of a full mass spectrum with high time resolution. As a proof-of-concept study, we exposed two different human cell lines relevant to inhalation exposures (A549 alveolar epithelial cells and THP-1 monocytes) to Pd-doped nanoplastics. The sc-ICP-TOFMS analysis revealed a similar dose-dependent endocytotic capacity of THP-1 and A549 cells for nanoplastics uptake, and particle internalization was confirmed by transmission electron microscopy. Moreover, single-cell quantification showed that a considerable proportion of the exposed cells (72% of THP-1; 67% of A549) did not associate with any nanoplastics after exposure to 50 μg L for 24 h. This highlights the importance to include single-cell analysis in the future safety assessment of nanoplastics in order to account for heterogeneous uptake within cell populations and to identify the origins and response trajectories of nanoplastics in biological tissues. In this regard, sc-ICP-TOFMS can be a powerful approach to provide quantitative data on nanoplastics-cell associations at single cell level for a large number of individual cells.
A cross-reactive plasmonic sensing array for drinking water assessment
The continuous monitoring of remote drinking water purification systems is a global challenge with direct consequences for human and environmental health. Here, we utilise a "nano-tastebud" sensor comprised of eight chemically-tailored plasmonic metasurfaces, for testing the composition of drinking water. Through undertaking a full chemometric analysis of the water samples and likely contaminants we were able to optimise the sensor specification to create an array of suitable tastebuds. By generating a unique set of optical responses for each water sample, we show that the array-based sensor can differentiate between untreated influent and treated effluent water with over 95% accuracy in flow and can detect compositional changes in distributed modified tap water. Once fully developed, this system could be integrated into water treatment facilities and distribution systems to monitor for changes in water composition.
The elemental fingerprint as a potential tool for tracking the fate of real-life model nanoplastics generated from plastic consumer products in environmental systems
Metals and metalloids are widely used in producing plastic materials as fillers and pigments, which can be used to track the environmental fate of real-life nanoplastics in environmental and biological systems. Therefore, this study investigated the metal and metalloids concentrations and fingerprint in real-life model nanoplastics generated from new plastic products (NPP) and from environmentally aged ocean plastic fragments (NPO) using single particle-inductively coupled plasma-mass spectrometry (SP-ICP-TOF-MS) and transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (TEM-EDX). The new plastic products include polypropylene straws (PPS), polyethylene terephthalate bottles (PETEB), white low-density polyethylene bags (LDPEB), and polystyrene foam shipping material (PSF). All real-life model nanoplastics contained metal and metalloids, including Si, Al, Sr, Ti, Fe, Ba, Cu, Pb, Zn, Cd, and Cr, and were depleted in rare earth elements. Nanoplastics generated from the white LDPEB were rich in Ti-bearing particles, whereas those generated from PSF were rich in Cr, Ti, and Pb. The Ti/Fe in the LDPEB nanoplastics and the Cr/Fe in the PSF nanoplastics were higher than the corresponding ratios in natural soil nanoparticles (NNPs). The Si/Al ratio in the PSF nanoplastics was higher than in the NNPs, possibly due to silica-based fillers. The elemental ratio of Si/Al, Fe/Cr, and Fe/Ni in the nanoplastics derived from ocean plastic fragments was intermediate between the nanoplastics derived from real-life plastic products and NNPs, indicating a combined contribution from pigments and fillers used in plastics and from natural sources. This study provides a method to track real-life nanoplastics in controlled laboratory studies based on nanoplastic elemental fingerprints. It expands the realm of nanoplastics that can be followed based on their metallic signatures to all kinds of nanoplastics. Additionally, this study illustrates the importance of nanoplastics as a source of metals and metal-containing nanoparticles in the environment.
The Heterogeneous Diffusion of Polystyrene Nanoparticles and the Effect on the Expression of Quorum-Sensing Genes and EPS Production as a Function of Particle Charge and Biofilm Age
Biofilms are abundantly present in both natural and engineered environmental systems and will likely influence broader particle fate and transport phenomena. While some developed models describe the interactions between nanoparticles and biofilms, studies are only beginning to uncover the complexity of nanoparticle diffusion patterns. With the knowledge of the nanoparticle potential to influence bacterial processes, more systematic studies are needed to uncover the dynamics of bacteria-nanoparticle interactions. This study explored specific microbial responses to nanoparticles and the heterogeneity of nanoparticle diffusion. biofilms (cultivated for 48 and 96 hours, representing early and late stages of development) were exposed to charged (aminated and carboxylated) polystyrene nanoparticles. With a combination of advanced fluorescence microscopy and real time quantitative PCR, we characterized the diffusion of polystyrene nanoparticles in biofilms and evaluated how biofilms respond to the presence of nanoparticles in terms of the expression of key EPS production-associated genes ( and ) and quorum-sensing associated () genes. Our findings show that nanoparticle diffusion coefficients are independent of the particle surface charge only in mature biofilms and that the presence of nanoparticles influences bacterial gene expression. Independent of the particle's charge polystyrene nanoparticles down-regulated in mature biofilms. By contrast, charge-specific responses were identified in and gene expression. The targeted genes expression analysis and heterogeneous diffusion models demonstrate that particle charge influences nanoparticle mobility and provides significant insight into the intrinsic structural heterogeneity of biofilms. These findings suggest that biofilm maturity and particle charge are essential factors to consider when evaluating the transport of nanoparticles within a biofilm matrix.
Interaction of TiO nanoparticles with lung fluid proteins and the resulting macrophage inflammatory response
Inhalation is a major exposure route to nanoparticles. Following inhalation, nanoparticles first interact with the lung lining fluid, a complex mixture of proteins, lipids, and mucins. We measure the concentration and composition of lung fluid proteins adsorbed on the surface of titanium dioxide (TiO) nanoparticles. Using proteomics, we find that lung fluid results in a unique protein corona on the surface of the TiO nanoparticles. We then measure the expression of three cytokines (interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and macrophage inflammatory protein 2 (MIP-2)) associated with lung inflammation. We find that the corona formed from lung fluid leads to elevated expression of these cytokines in comparison to bare TiO nanoparticles or coronas formed from serum or albumin. These experiments show that understanding the concentration and composition of the protein corona is essential for understanding the pulmonary response associated with human exposure to nanoparticles.
Nanoscale heterogeneity of arsenic and selenium species in coal fly ash particles: analysis using enhanced spectroscopic imaging and speciation techniques
Coal combustion byproducts are known to be enriched in arsenic (As) and selenium (Se). This enrichment is a concern during the handling, disposal, and reuse of the ash as both elements can be harmful to wildlife and humans if mobilized into water and soils. The leaching potential and bioaccessibility of As and Se in coal fly ash depends on the chemical forms of these elements and their association with the large variety of particles that comprise coal fly ash. The overall goal of this research was to determine nanoscale and microscale solid phase mineral associations and oxidation states of As and Se in fly ash. We utilized nanoscale 2D imaging (30-50 nm spot size) with the Hard X-ray Nanoprobe (HXN) in combination with microprobe X-ray capabilities (∼5 μm resolution) to determine the As and Se elemental associations. Speciation of As and Se was also measured at the nano- to microscale with X-ray absorption spectroscopy. The enhanced resolution of HXN showed As and Se as either diffusely located around or comingled with Ca- and Fe-rich particles. The results also showed nanoparticles of Se attached to the surface of fly ash grains. Overall, a comparison of As and Se species across scales highlights the heterogeneity and complexity of chemical associations for these trace elements of concern in coal fly ash.
Fragmentation and release of pristine and functionalized carbon nanotubes from epoxy-nanocomposites during accelerated weathering
There is an increasing volume of nano-enabled materials in the market. Once composites containing nano-additives are disposed of, weathering could deteriorate their structures, releasing nanoparticles and risking exposure of humans and aquatic organisms. Composite degradation due to environmental aging continues, including structural deterioration resulting in cracking, fragmentation, and release of microplastics and nano-additives to the environment. This research aims to study the degradation and release of initially embedded nanomaterials (NMs) from composites and their toxicity. The molecular interaction of carbon nanotube (CNT)/polymer composites is critical for modifying the polymer properties. This study investigated the interactions of functional multiwalled carbon nanotube (MWCNT) composites which affect their release during accelerated weathering processes. Different epoxy-MWCNT composites were prepared by filling a polymer with pure MWCNTs and MWCNTs functionalized with acid () and amine () groups. The physical and chemical changes of aged composites were characterized by gravimetric analysis, contact angle measurements, FTIR, SEM, and laser confocal microscopy. A loss of hydrophobicity was observed for composite surfaces long before surface cracks materialized. Released polymer fragments and nanoparticles were analyzed in wash water using TEM, FTIR and Raman spectroscopy. The environmental risks for long-term use of CNT-polymer composites and the influence of fillers on the extent of chemical photodegradation depended on the combination of polymer and fillers. If nanoparticles are released from the matrix, the high surface-to-volume ratio and reactivity of NMs make them highly dynamic in environmental systems. Exposure to these released NMs could negatively affect human health and the environment. This study provides fragmentation and CNT particle release data that could describe how molecular-level interactions between functionalized CNTs and epoxy polymers affect the aging and release of CNTs. A toxicity assessment based on a reactive oxygen species (ROS) formation assay and MTS assay for cell viability and activity of the released polymer and CNT fragments and leachate showed moderate levels of cytotoxicity of released materials as compared to pristine epoxy plates.
The mechanistic effects of human digestion on magnesium oxide nanoparticles: implications for probiotics Lacticaseibacillus rhamnosus GG and Bifidobacterium bifidum VPI 1124
The effects of nanoparticles (NPs) on the human gut microbiota are of high interest due to the link between the gut homeostasis and overall human health. The human intake of metal oxide NPs has increased due to its use in the food industry as food additives. Specifically, magnesium oxide nanoparticles (MgO-NPs) have been described as antimicrobial and antibiofilm. Therefore, in this work we investigated the effects of the food additive MgO-NPs, on the probiotic and commensal Gram-positive and . The physicochemical characterization showed that food additive MgO is formed by nanoparticles (MgO-NPs) and after a simulated digestion, MgO-NPs partially dissociate into Mg. Moreover, nanoparticulate structures containing magnesium were found embedded in organic material. Exposures to MgO-NPs for 4 and 24 hours increased the bacterial viability of both and when in biofilms but not when as planktonic cells. High doses of MgO-NPs significantly stimulated the biofilm development of , but not . It is likely that the effects are primarily due to the presence of ionic Mg. Evidence from the NPs characterization indicate that interactions bacteria/NPs are unfavorable as both structures are negatively charged, which would create repulsive forces.