Facile synthesis of intra-nanogap enhanced Raman tags with different shapes
Hot spot engineering in plasmonic nanostructures plays a significant role in surface enhanced Raman scattering for bioanalysis and cell imaging. However, creating stable, reproducible, and strong SERS signals remains challenging due to the potential interference from surrounding chemicals and locating SERS-active analytes into hot-spot regions. Herein, we developed a straightforward approach to synthesize intra-gap nanoparticles encapsulating 4-nitrobenzenethiol (4-NBT) as a reporter molecule within these gaps to avoid outside interference. We made three kinds of intra-gap nanoparticles using nanorods, bipyramids, and nanospheres as cores, in which the nanorod based intra-gap nanoparticles exhibit the highest SERS activity. The advantage of our method is the ease of preparation of high-yield and stable intra-gap nanoparticles characterized by a short incubation time (10 mins) with 4-NBT and quick synthesis without requiring an additional step to centrifuge for the purification of core nanoparticles. The intense localized field in the synthesized hot spots of these plasmonic gap nanostructures holds great promise as a SERS substrate for a broad range of quantitative optical applications.
Exploiting Sound for Emerging Applications of Extracellular Vesicles
Extracellular vesicles are nano- to microscale, membrane-bound particles released by cells into extracellular space, and act as carriers of biomarkers and therapeutics, holding promising potential in translational medicine. However, the challenges remain in handling and detecting extracellular vesicles for disease diagnosis as well as exploring their therapeutic capability for disease treatment. Here, we review the recent engineering and technology advances by leveraging the power of sound waves to address the challenges in diagnostic and therapeutic applications of extracellular vesicles and biomimetic nanovesicles. We first introduce the fundamental principles of sound waves for understanding different acoustic-assisted extracellular vesicle technologies. We discuss the acoustic-assisted diagnostic methods including the purification, manipulation, biosensing, and bioimaging of extracellular vesicles. Then, we summarize the recent advances in acoustically enhanced therapeutics using extracellular vesicles and biomimetic nanovesicles. Finally, we provide perspectives into current challenges and future clinical applications of the promising extracellular vesicles and biomimetic nanovesicles powered by sound.
Engineered protein and Jakinib nanoplatform with extraordinary rheumatoid arthritis treatment
Rheumatoid arthritis (RA) is a relatively common inflammatory disease that affects the synovial tissue, eventually results in joints destruction and even long-term disability. Although Janus kinase inhibitors (Jakinibs) show a rapid efficacy and are becoming the most successful agents in RA therapy, high dosing at frequent interval and severe toxicities cannot be avoided. Here, we developed a new type of fully compatible nanocarriers based on recombinant chimeric proteins with outstanding controlled release of upadacitinib. In addition, the fluorescent protein component of the nanocarriers enabled noninvasive fluorescence imaging of RA lesions, thus allowing real-time detection of RA therapy. Using rat models, the nanotherapeutic is shown to be superior to free upadacitinib, as indicated by extended circulation time and sustained bioefficacy. Strikingly, this nanosystem possesses an ultralong half-life of 45 h and a bioavailability of 4-times higher than pristine upadacitinib, thus extending the dosing interval from one day to 2 weeks. Side effects such as over-immunosuppression and leukocyte levels reduction were significantly mitigated. This smart strategy boosts efficacy, safety and visuality of Jakinibs in RA therapy, and potently enables customized designs of nanoplatforms for other therapeutics.
Sensors-integrated organ-on-a-chip for biomedical applications
As a promising new micro-physiological system, organ-on-a-chip has been widely utilized for pharmaceutical study and tissues engineering based on the three-dimensional constructions of tissues/organs and delicate replication of -like microenvironment. To better observe the biological processes, a variety of sensors have been integrated to realize , real-time, and sensitive monitoring of critical signals for organs development and disease modeling. Herein, we discuss the recent research advances made with respect to sensors-integrated organ-on-a-chip in this overall review. Firstly, we briefly explore the underlying fabrication procedures of sensors within microfluidic platforms and several classifications of sensory principles. Then, emphasis is put on the highlighted applications of different types of organ-on-a-chip incorporated with various sensors. Last but not least, perspective on the remaining challenges and future development of sensors-integrated organ-on-a-chip are presented.
Aerosolized immunotherapeutic nanoparticle inhalation potentiates PD-L1 blockade for locally advanced lung cancer
Despite therapeutic advancements, the prognosis of locally advanced non-small cell lung cancer (LANSCLC), which has invaded multiple lobes or the other lung and intrapulmonary lymph nodes, remains poor. The emergence of immunotherapy with immune checkpoint blockade (ICB) is transforming cancer treatment. However, only a fraction of lung cancer patients benefit from ICB. Significant clinical evidence suggests that the proinflammatory tumor microenvironment (TME) and programmed death-ligand 1 (PD-L1) expression correlate positively with response to the PD-1/PD-L1 blockade. We report here a liposomal nanoparticle loaded with cyclic dinucleotide and aerosolized (AeroNP-CDN) for inhalation delivery to deep-seated lung tumors and target CDN to activate stimulators of interferon (IFN) genes in macrophages and dendritic cells (DCs). Using a mouse model that recapitulates the clinical LANSCLC, we show that AeroNP-CDN efficiently mitigates the immunosuppressive TME by reprogramming tumor-associated macrophage from the M2 to M1 phenotype, activating DCs for effective tumor antigen presentation and increasing tumor-infiltrating CD8 T cells for adaptive anticancer immunity. Intriguingly, activation of interferons by AeroNP-CDN also led to increased PD-L1 expression in lung tumors, which, however, set a stage for response to anti-PD-L1 treatment. Indeed, anti-PD-L1 antibody-mediated blockade of IFNs-induced immune inhibitory PD-1/PD-L1 signaling further prolonged the survival of the LANSCLC-bearing mice. Importantly, AeroNP-CDN alone or combination immunotherapy was safe without local or systemic immunotoxicity. In conclusion, this study demonstrates a potential nano-immunotherapy strategy for LANSCLC, and mechanistic insights into the evolution of adaptive immune resistance provide a rational combination immunotherapy to overcome it.
Organic thin-film transistors and related devices in life and health monitoring
The early determination of disease-related biomarkers can significantly improve the survival rate of patients. Thus, a series of explorations for new diagnosis technologies, such as optical and electrochemical methods, have been devoted to life and health monitoring. Organic thin-film transistor (OTFT), as a state-of-the-art nano-sensing technology, has attracted significant attention from construction to application owing to the merits of being label-free, low-cost, facial, and rapid detection with multi-parameter responses. Nevertheless, interference from non-specific adsorption is inevitable in complex biological samples such as body liquid and exhaled gas, so the reliability and accuracy of the biosensor need to be further improved while ensuring sensitivity, selectivity, and stability. Herein, we overviewed the composition, mechanism, and construction strategies of OTFTs for the practical determination of disease-related biomarkers in both body fluids and exhaled gas. The results show that the realization of bio-inspired applications will come true with the rapid development of high-effective OTFTs and related devices.
Nanotopographic micro-nano forces finely tune the conformation of macrophage mechanosensitive membrane protein integrin β to manipulate inflammatory responses
Finely tuning mechanosensitive membrane proteins holds great potential in precisely controlling inflammatory responses. In addition to macroscopic force, mechanosensitive membrane proteins are reported to be sensitive to micro-nano forces. Integrin , for example, might undergo a piconewton scale stretching force in the activation state. High-aspect-ratio nanotopographic structures were found to generate nN-scale biomechanical force. Together with the advantages of uniform and precisely tunable structural parameters, it is fascinating to develop low-aspect-ratio nanotopographic structures to generate micro-nano forces for finely modulating their conformations and the subsequent mechanoimmiune responses. In this study, low-aspect-ratio nanotopographic structures were developed to finely manipulate the conformation of integrin β. The direct interaction of forces and the model molecule integrin α was first performed. It was demonstrated that pressing force could successfully induce conformational compression and deactivation of integrin α, and approximately 270 to 720 pN may be required to inhibit its conformational extension and activation. Three low-aspect-ratio nanotopographic surfaces (nanohemispheres, nanorods, and nanoholes) with various structural parameters were specially designed to generate the micro-nano forces. It was found that the nanorods and nanohemispheres surfaces induce greater contact pressure at the contact interface between macrophages and nanotopographic structures, particularly after cell adhesion. These higher contact pressures successfully inhibited the conformational extension and activation of integrin β, suppressing focal adhesion activity and the downstream PI3K-Akt signaling pathway, reducing NF-B signaling and macrophage inflammatory responses. Our findings suggest that nanotopographic structures can be used to finely tune mechanosensitive membrane protein conformation changes, providing an effective strategy for precisely modulating inflammatory responses.
CRISPR/Cas systems for the detection of nucleic acid and non-nucleic acid targets
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems are becoming powerful tools for disease biomarkers detection. Due to the specific recognition, -cleavage and nonspecific -cleavage capabilities, CRISPR/Cas systems have implemented the detection of nucleic acid targets (DNA and RNA) as well as non-nucleic acid targets (e.g., proteins, exosomes, cells, and small molecules). In this review, we first summarize the principles and characteristics of various CRISPR/Cas systems, including CRISPR/Cas9, Cas12, Cas13 and Cas14 systems. Then, various types of applications of CRISPR/Cas systems used in detecting nucleic and non-nucleic acid targets are introduced emphatically. Finally, the prospects and challenges of their applications in biosensing are discussed.
Miniaturized retractable thin-film sensor for wearable multifunctional respiratory monitoring
As extremely important physiological indicators, respiratory signals can often reflect or predict the depth and urgency of various diseases. However, designing a wearable respiratory monitoring system with convenience, excellent durability, and high precision is still an urgent challenge. Here, we designed an easy-fabricate, lightweight, and badge reel-like retractable self-powered sensor (RSPS) with high precision, sensitivity, and durability for continuous detection of important indicators such as respiratory rate, apnea, and respiratory ventilation. By using three groups of interdigital electrode structures with phase differences, combined with flexible printed circuit boards (FPCBs) processing technology, a miniature rotating thin-film triboelectric nanogenerator (RTF-TENG) was developed. Based on discrete sensing technology, the RSPS has a sensing resolution of 0.13 mm, sensitivity of 7 P·mm, and durability more than 1 million stretching cycles, with low hysteresis and excellent anti-environmental interference ability. Additionally, to demonstrate its wearability, real-time, and convenience of respiratory monitoring, a multifunctional wearable respiratory monitoring system (MWRMS) was designed. The MWRMS demonstrated in this study is expected to provide a new and practical strategy and technology for daily human respiratory monitoring and clinical diagnosis.
CsPbBr-DMSO merged perovskite micro-bricks for efficient X-ray detection
Inorganic perovskite wafers with good stability and adjustable sizes are promising in X-ray detection but the high synthetic temperature is a hindrance. Herein, dimethyl sulfoxide (DMSO) is used to prepare the CsPbBr micro-bricks powder at room temperature. The CsPbBr powder has a cubic shape with few crystal defects, small charge trap density, and high crystallinity. A trace amount of DMSO attaches to the surface of the CsPbBr micro-bricks via Pb-O bonding, forming the CsPbBr-DMSO adduct. During hot isostatic processing, the released DMSO vapor merges the CsPbBr micro-bricks, producing a compact and dense CsPbBr wafer with minimized grain boundaries and excellent charge transport properties. The CsPbBr wafer shows a large mobility-lifetime (μτ) product of 5.16 × 10 cm·V, high sensitivity of 14,430 μC·Gy·cm, low detection limit of 564 nGy·s, as well as robust stability in X-ray detection. The results reveal a novel strategy with immense practical potential pertaining to high-contrast X-ray detection.
Optical control of neuronal activities with photoswitchable nanovesicles
Precise modulation of neuronal activity by neuroactive molecules is essential for understanding brain circuits and behavior. However, tools for highly controllable molecular release are lacking. Here, we developed a photoswitchable nanovesicle with azobenzene-containing phosphatidylcholine (azo-PC), coined 'azosome', for neuromodulation. Irradiation with 365 nm light triggers the trans-to-cis isomerization of azo-PC, resulting in a disordered lipid bilayer with decreased thickness and cargo release. Irradiation with 455 nm light induces reverse isomerization and switches the release off. Real-time fluorescence imaging shows controllable and repeatable cargo release within seconds (< 3 s). Importantly, we demonstrate that SKF-81297, a dopamine D1-receptor agonist, can be repeatedly released from the azosome to activate cultures of primary striatal neurons. Azosome shows promise for precise optical control over the molecular release and can be a valuable tool for molecular neuroscience studies.
tumor ultrasound-switchable fluorescence imaging via intravenous injections of size-controlled thermosensitive nanoparticles
Near-infrared fluorescence imaging has emerged as a noninvasive, inexpensive, and ionizing-radiation-free monitoring tool for assessing tumor growth and treatment efficacy. In particular, ultrasound switchable fluorescence (USF) imaging has been explored with improved imaging sensitivity and spatial resolution in centimeter-deep tissues. This study achieved size control of polymer-based and indocyanine green (ICG) encapsulated USF contrast agents, capable of accumulating at the tumor after intravenous injections. These nanoprobes varied in size from 58 nm to 321 nm. The bioimaging profiles demonstrated that the proposed nanoparticles can efficiently eliminate the background light from normal tissue and show a tumor-specific fluorescence enhancement in the BxPC-3 tumor-bearing mice models possibly via the enhanced permeability and retention effect. tumor USF imaging further proved that these nanoprobes can effectively be switched 'ON' with enhanced fluorescence in response to a focused ultrasound stimulation in the tumor microenvironment, contributing to the high-resolution USF images. Therefore, our findings suggest that ICG-encapsulated nanoparticles are good candidates for USF imaging of tumors in living animals, indicating their great potential in optical tumor imaging in deep tissue.
Melatonin and probiotics ameliorate nanoplastics-induced hematopoietic injury by modulating the gut microbiota-metabolism
Plastic pollution has become a non-negligible global pollution problem. Nanoplastics (NP) can reach the bone marrow with blood circulation and develop hematotoxicity, but potential mechanisms and prevention strategies are lacking. Here, we report the biological distribution of NP particles in the bone marrow of mice and hematopoietic toxicity after exposure to 60 μg of 80 nm NP for 42 days. NP exposure inhibited the capability of bone marrow hematopoietic stem cells to renew and differentiate. Notably, probiotics and melatonin supplementation significantly ameliorated NP-induced hematopoietic damage, and the former was superior to the latter. And interestingly, melatonin and probiotic interventions may involve different microbes and metabolites. After melatonin intervention, creatine showed a stronger correlation with NP-induced gut microbiota disorders. In contrast, probiotic intervention reversed the levels of more gut microbes and plasma metabolites. Of these, threonine, malonylcarnitine, and 3-hydroxybutyric acid might be potential performers in the regulation of hematopoietic toxicity by gut microbes, as they had a more significant relationship with the identified microbes. In conclusion, supplementation with melatonin or probiotics may be two candidates to prevent hematopoietic toxicity attributable to NP exposure. Also, the multi-omics results may lay the foundation for future investigations into in-depth mechanisms.
A lipid-based LMP2-mRNA vaccine to treat nasopharyngeal carcinoma
Nasopharyngeal carcinoma (NPC) is a serious and highly invasive epithelial malignancy that is closely associated with Epstein-Barr virus (EBV). Due to the lack of therapeutic vaccines for NPC, we selected EBV latent membrane protein 2 (LMP2) as a preferable targeting antigen to develop a lipid-based LMP2-mRNA (mLMP2) vaccine. Full-length mLMP2 expressing LMP2 was first synthesized using an transcription method and then encapsulated into (2,3-dioleacyl propyl) trimethylammonium chloride (DOTAP)-based cationic liposomes to obtain the mRNA vaccine (LPX-mLMP2). The cell assays showed that the antigen-presenting cells were capable of highly efficient uptake of LPX-mLMP2 and expression of LMP2. LMP2 could subsequently be presented to form the peptide-major histocompatibility complex (pMHC). Furthermore, LPX-mLMP2 could accumulate in the spleen, express antigens, promote the maturation of dendritic cells and stimulate antigen-specific T-cell responses It dramatically inhibited the tumor growth of the LMP2-expressing tumor model after three doses of vaccination. Additionally, the proliferation of antigen-specific T cells in the tumor site made a good sign for the promise of mRNA vaccines in virus-induced cancer. Overall, we provided a newly developed antigen-encoding mRNA vaccine with advantages against NPC. We also demonstrated that mRNA vaccines are attractive candidates for cancer immunotherapy.
pH-triggered cancer-targeting polymers: From extracellular accumulation to intracellular release
Stimuli-responsive polymers are promising to achieve targeted delivery, improved stability during circulation, and controlled release of therapeutic and diagnostic agents. Among them, pH-responsive polymeric nanocarriers have attracted significant attention as pH varies in different body fluids (e.g., stomach, intestine, and colon) and intracellular organelles (e.g., endosome, lysosome, and mitochondria) to maintain homeostasis, while distinctive pH changes are also found in certain pathological states. For example, the extracellular environment of the tumor is acidic, which can be employed to drive selective delivery. During the internalization process, since most nanocarriers enter cells upon endocytosis where a drop of pH from 6.5 to 5.0 can occur from endosome to lysosome, pH-sensitive groups have been developed for enhanced cargo release. In this review, both non-covalent and covalent interactions responsive to pH changes are introduced, with a focus on the structure-property relationship and their applications in cancer targeting and endosomal escape.
Use of stimulatory responsive soft nanoparticles for intracellular drug delivery
Drug delivery has made tremendous advances in the last decade. Targeted therapies are increasingly common, with intracellular delivery highly impactful and sought after. Intracellular drug delivery systems have limitations due to imprecise and non-targeted release profiles. One way this can be addressed is through using stimuli-responsive soft nanoparticles, which contain materials with an organic backbone such as lipids and polymers. The choice of biomaterial is essential for soft nanoparticles to be responsive to internal or external stimuli. The nanoparticle must retain its integrity and payload in non-targeted physiological conditions while responding to particular intracellular environments where payload release is desired. Multiple internal and external factors could stimulate the intracellular release of drugs from nanoparticles. Internal stimuli include pH, oxidation, and enzymes, while external stimuli include ultrasound, light, electricity, and magnetic fields. Stimulatory responsive soft nanoparticulate systems specifically utilized to modulate intracellular delivery of drugs are explored in this review.
Self-assembled multiepitope nanovaccine based on NoV P particles induces effective and lasting protection against H3N2 influenza virus
Current seasonal influenza vaccines confer only limited coverage of virus strains due to the frequent genetic and antigenic variability of influenza virus (IV). Epitope vaccines that accurately target conserved domains provide a promising approach to increase the breadth of protection; however, poor immunogenicity greatly hinders their application. The protruding (P) domain of the norovirus (NoV), which can self-assemble into a 24-mer particle called the NoV P particle, offers an ideal antigen presentation platform. In this study, a multiepitope nanovaccine displaying influenza epitopes (HMN-PP) was constructed based on the NoV P particle nanoplatform. Large amounts of HMN-PP were easily expressed in in soluble form. Animal experiments showed that the adjuvanted HMN-PP nanovaccine induced epitope-specific antibodies and haemagglutinin (HA)-specific neutralizing antibodies, and the antibodies could persist for at least three months after the last immunization. Furthermore, HMN-PP induced matrix protein 2 extracellular domain (M2e)-specific antibody-dependent cell-mediated cytotoxicity, CD4 and CD8 T-cell responses, and a nucleoprotein (NP)-specific cytotoxic T lymphocyte (CTL) response. These results indicated that the combination of a multiepitope vaccine and self-assembled NoV P particles may be an ideal and effective vaccine strategy for highly variable viruses such as IV and SARS-CoV-2.
Ultrasensitive and point-of-care detection of plasma phosphorylated tau in Alzheimer's disease using colorimetric and surface-enhanced Raman scattering dual-readout lateral flow assay
Phosphorylation of tau at Ser (396, 404) (p-tau) is one of the earliest phosphorylation events, and plasma p-tau level appears to be a potentially promising biomarker of Alzheimer's disease (AD). The low abundance and easy degradation of p-tau in the plasma make the lateral flow assay (LFA) a suitable choice for point-of-care detection of plasma p-tau levels. Herein, based on our screening of a pair of p-tau-specific antibodies, we developed a colorimetric and surface-enhanced Raman scattering (SERS) dual-readout LFA for the rapid, highly sensitive, and robust detection of plasma p-tau levels. This LFA realized a detection limit of 60 pg/mL by the naked eye or 3.8 pg/mL by SERS without cross-reacting with other tau species. More importantly, LFA rapidly and accurately differentiated AD patients from healthy controls, suggesting that it has the potential for clinical point-of-care application in AD diagnosis. This dual-readout LFA has the advantages of simple operation, rapid, and ultra-sensitive detection, providing a new way for early AD diagnosis and intervention, especially in primary and community AD screening.
Native and engineered exosomes for inflammatory disease
Exosomes are extracellular vesicles which carry specific molecular information from donor cells and act as an intercellular communication vehicle, which have emerged as a novel cell-free strategy for the treatment of many diseases including inflammatory disease. Recently, rising studies have developed exosome-based strategies for novel inflammation therapy due to their biocompatibility and bioactivity. Researchers not only use native exosomes as therapeutic agents for inflammation, but also strive to make up for the natural defects of exosomes through engineering methods to improve and update the property of exosomes for enhanced therapeutic effects. The engineered exosomes can improve cargo-loading efficiency, targeting ability, stability, etc., to achieve combined and diverse treatment strategies in inflammation diseases. Herein, a comprehensive overview of the recent advances in application studies of native and engineered exosomes as well as the engineered methods is provided. Meanwhile, potential application prospects, possible challenges, and the development of clinical researches of exosome treatment strategy are concluded from plentiful examples, which may be able to provide guidance and suggestions for the future research and application of exosomes.
Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces
Magnetocontrollable droplet mobility on surfaces of both solids and simple fluids have been widely used in a wide range of applications. However, little is understood about the effect of the magnetic field on the wettability and mobility of droplets on structured fluids. Here, we report the manipulation of the dynamic behaviors of water droplets on a film of thermotropic liquid crystals (LCs). We find that the static wetting behavior and static friction of water droplets on a 4'-octyl-4-biphenylcarbonitrile (8CB) film strongly depend on the LC mesophases, and that a magnetic field caused no measurable change to these properties. However, we find that the droplet dynamics can be affected by a magnetic field as it slides on a nematic 8CB film, but not on isotropic 8CB, and is dependent on both the direction and strength of the magnetic field. By measuring the dynamic friction of a droplet sliding on a nematic 8CB film, we find that a magnetic field alters the internal orientational ordering of the 8CB which in turn affects its viscosity. We support this interpretation with a scaling argument using the LC magnetic coherence length that includes (i) the elastic energy from the long-range orientational ordering of 8CB and (ii) the free energy from the interaction between 8CB and a magnetic field. Overall, these results advance our understanding of droplet mobility on LC films and enable new designs for responsive surfaces that can manipulate the mobility of water droplets.
Comparison of extruded cell nanovesicles and exosomes in their molecular cargos and regenerative potentials
Extracellular vesicles (EVs) generated from mesenchymal stem cells (MSCs) play an essential role in modulating cell-cell communication and tissue regeneration. The clinical translation of EVs is constrained by the poor yield of EVs. Extrusion has recently become an effective technique for producing a large scale of nanovesicles (NVs). In this study, we systematically compared MSC NVs (from extrusion) and EVs (from natural secretion). Proteomics and RNA sequencing data revealed that NVs resemble MSCs more closely than EVs. Additionally, microRNAs in NVs are related to cardiac repair, fibrosis repression, and angiogenesis. Lastly, intravenous delivery of MSC NVs improved heart repair and cardiac function in a mouse model of myocardial infarction.