Selenium metabolism and selenoproteins function in brain and encephalopathy
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
rAAV-CRISPR/Cas9-mediated in vivo delivery of porcine embryos to construct knockout pigs
Genomic analysis of modern maize inbred lines reveals diversity and selective breeding effects
Two paths, one goal: mechanism of calcium homeostasis to balance plant growth and immunity
Exaptation of pectoral fins for olfaction in the spiny red gurnard (Chelidonichthys spinosus) through an ancient receptor
Palindrome-mediated DNA nanotubes with cell-specific aptamers to improve targeted antitumor effects and reduce toxicity on non-small cell lung cancer
Chemotherapy is regarded as a widely used and effective treatment strategy for lung cancer, although most conventional chemotherapeutics cause severe toxic side-effects due to their indiscriminate attacks on both cancerous and normal cells. Although nucleic acid nanomaterials are emerging as a promising drug delivery strategy, their clinical applications are limited by rapid degradation by nucleases and difficulties in targeting cancer cells. In this study, we have developed a Rhein-loaded aptamer-based DNA nanotube (DNT-S6@Rhein) for the targeted and efficient therapy of non-small cell lung cancer. Through the palindrome segments, two specified oligonucleotides were hybridized and folded into the well-defined nanotubes (DNT-S6), with the S6 aptamer distributed outside. The obtained nanotubes exhibited excellent serum stability and targeting ability towards A549 cells due to the firm structure and decoration of the S6 aptamer. Rhein, as an antitumor drug and DNA intercalator, can be effectively inserted into the DNT-S6. The drug-loaded nanotubes rapidly disassembled in intracellular environment and then the released Rhein was found to activate cellular apoptotic process and significantly suppress proliferation, migration and invasion of A549 cells. Moreover, DNT-S6@Rhein could efficiently accumulate in tumor regions, offering compelling therapeutic efficacy and biocompatibility under both in vitro and in vivo settings. These findings of this study provide a promising strategy for mitigating the inevitable systemic side-effects of chemotherapy and expand the potential application of DNA nanostructure on targeted drug delivery.
Comprehensive cultivation of the broiler gut microbiota guides bacterial isolation from chickens
Chicken gut microbiota plays an important role in maintaining their physiological health. However, the cultivability of chicken gut microbiota is not well understood, limiting the exploration of certain key gut bacteria in regulating intestinal health and nutritional metabolism. This study aimed to examine the cultivability of chicken cecal microbiota and to provide guidance for future chicken gut microbiota cultivation. A total of 58 different culture conditions were applied to culture broiler cecal microbiota, and the culture-dependent (CD; pooled colonies form each plate) and culture-independent (CI; broiler cecal contents) samples were collected for 16S rRNA gene sequencing and microbial analysis. The CD methods detected higher microbial richness (3,636 vs 2,331 OTUs) than CI methods, and the recovery rates of bacterial OTUs and genera reached 43.6% and 68.9%, respectively. The genera of Bacteroides (19.9%), Alistipes (11.0%) and Barnesiella (10.7%) were highly abundant detected by CI methods, however, there occupied a small proportion (<1.0%) of total cultured microbiota in CD methods. We then developed reference figures and tables showing optimal cultivation conditions for different gut bacteria taxa. Moreover, 81 different lactic acid bacteria strains covering 5 genera were isolated, and 15 strains had less than 97.0% similarity to known bacteria in the national center for biotechnology information (NCBI) online database. Overall, this study provides preliminary guidance in culturing specific gut microbiota from chickens, which will contribute to future studies to characterize the biological functions of key microbes in chicken nutritional metabolism and health.
Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations
Ruminant livestock provide a rich source of products, such as meat, milk, and wool, and play a critical role in global food security and nutrition. Over the past few decades, genomic studies of ruminant livestock have provided valuable insights into their domestication and the genetic basis of economically important traits, facilitating the breeding of elite varieties. In this review, we summarize the main advancements for domestic ruminants in reference genome assemblies, population genomics, and the identification of functional genes or variants for phenotypic traits. These traits include meat and carcass quality, reproduction, milk production, feed efficiency, wool and cashmere yield, horn development, tail type, coat color, environmental adaptation, and disease resistance. Functional genomic research is entering a new era with the advancements of graphical pangenomics and telomere-to-telomere (T2T) gap-free genome assembly. These advancements promise to improve our understanding of domestication and the molecular mechanisms underlying economically important traits in ruminant livestock. Finally, we provide new perspectives and future directions for genomic research on ruminant genomes. We suggest how ever-increasing multiomics datasets will facilitate future studies and molecular breeding in livestock, including the potential to uncover novel genetic mechanisms underlying phenotypic traits, to enable more accurate genomic prediction models, and to accelerate genetic improvement programs.
The microbiome's influence on obesity: mechanisms and therapeutic potential
In 2023, the World Obesity Atlas Federation concluded that more than 50% of the world's population would be overweight or obese within the next 12 years. At the heart of this epidemic lies the gut microbiota, a complex ecosystem that profoundly influences obesity-related metabolic health. Its multifaced role encompasses energy harvesting, inflammation, satiety signaling, gut barrier function, gut-brain communication, and adipose tissue homeostasis. Recognizing the complexities of the cross-talk between host physiology and gut microbiota is crucial for developing cutting-edge, microbiome-targeted therapies to address the global obesity crisis and its alarming health and economic repercussions. This narrative review analyzed the current state of knowledge, illuminating emerging research areas and their implications for leveraging gut microbial manipulations as therapeutic strategies to prevent and treat obesity and related disorders in humans. By elucidating the complex relationship between gut microflora and obesity, we aim to contribute to the growing body of knowledge underpinning this critical field, potentially paving the way for novel interventions to combat the worldwide obesity epidemic.
Research landmarks on the 60th anniversary of Epstein-Barr virus
Epstein-Barr virus (EBV), the first human oncovirus discovered in 1964, has become a focal point in virology, immunology, and oncology because of its unique biological characteristics and significant role in human diseases. As we commemorate the 60th anniversary of EBV's discovery, it is an opportune moment to reflect on the major advancements in our understanding of this complex virus. In this review, we highlight key milestones in EBV research, including its virion structure and life cycle, interactions with the host immune system, association with EBV-associated diseases, and targeted intervention strategies.
Dual activation of soybean resistance against Phytophthora sojae by pectin lyase and degraded pectin oligosaccharides
Phytophthora pathogens secrete numerous apoplastic effectors to manipulate host immunity. Herein, we identified a polysaccharide lyase 1 protein, PsPL1, which acts as an essential virulence factor of P. sojae infection in soybean. However, the overexpression of PsPL1 in P. sojae reduced infection and triggered enhanced immune responses in soybean. PsPL1 exhibited pectin lyase activity and degraded plant pectin to generate pectin oligosaccharides (POSs) with a polymerization degree of 3-14, exhibiting different levels of acetylation and methylation modifications. PsPL1 and the degraded pectin products triggered immune responses in soybean and different Solanaceous plants. The PsPL1-triggered immune responses required RSPL1, a membrane-localized leucine-rich repeat receptor-like protein, which is essential for Phytophthora resistance. Conversely, the PsPL1-degraded product-triggered immune responses depended on the membrane-localized lysin motif receptor-like kinase CERK1. This study reveals that the pectin lyase exhibits a dual immunogenic role during P. sojae infection, which activates plant resistance through different immune receptors and provides novel insights into the function of pectin lyase in host-pathogen interactions.
Innovative genome editing in plants: a transposase and CRISPR combination approach
Identification of a dual functional betulinic acid analog for the treatment of osteoarthritis by phenotypic screening
Nitrogen addition promotes soil carbon accumulation globally
Soil is the largest carbon (C) reservoir in terrestrial ecosystems and plays a crucial role in regulating the global C cycle and climate change. Increasing nitrogen (N) deposition has been widely considered as a critical factor affecting soil organic carbon (SOC) storage, but its effect on SOC components with different stability remains unclear. Here, we analyzed extensive empirical data from 304 sites worldwide to investigate how SOC and its components respond to N addition. Our analysis showed that N addition led to a significant increase in bulk SOC (6.7%), with greater increases in croplands (10.6%) and forests (6.0%) compared to grasslands (2.1%). Regarding SOC components, N addition promoted the accumulation of plant-derived C (9.7%-28.5%) over microbial-derived C (0.2%), as well as labile (5.7%) over recalcitrant components (-1.2%), resulting in a shift towards increased accumulation of plant-derived labile C. Consistently, N addition led to a greater increase in particulate organic C (11.9%) than mineral-associated organic C (3.6%), suggesting that N addition promotes C accumulation across all pools, with more increase in unstable than stable pools. The responses of SOC and its components were best predicted by the N addition rate and net primary productivity. Overall, our findings suggest that N enrichment could promote the accumulation of plant-derived and non-mineral associated C and a subsequent decrease in the overall stability of soil C pool, which underscores the importance of considering the effects of N enrichment on SOC components for a better understanding of C dynamics in soils.
Dissecting the cell microenvironment of ovarian endometrioma through single-cell RNA sequencing
Ovarian endometrioma (OE), also known as "chocolate cysts," is a cystic mass that develops in the ovaries due to endometriosis and is a common gynecological condition characterized by the growth of endometrial tissue outside the uterus, leading to symptoms such as dysmenorrhea, pelvic pain, and infertility. However, the precise molecular and cellular mechanisms driving this pathophysiology remain largely unknown, posing challenges for diagnosis and treatment. Here, we employed integrated single-cell transcriptomic profiling of over 52,000 individual cells from endometrial tissues of OE patients and healthy donors and identified twelve major cell populations. We identified notable alterations in cell type-specific proportions and molecular signatures associated with OE. Notably, the activation of IGFBP5 macrophages with pro-inflammatory properties, NK cell exhaustion, and aberrant proliferation of IQCG and KLF2 epithelium are key features and may be the potential mechanisms underlying the pathogenesis of OE. Collectively, our data contribute to a better understanding of OE at the single cell level and may pave the way for the development of novel therapeutic strategies.
Resolving the developmental mechanisms of cardiac microthrombosis of SARS-CoV-2 based on single-cell transcriptome analysis
The coronavirus disease 2019 (COVID-19) outbreak caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) developed into a global health emergency. Systemic microthrombus caused by SARS-CoV-2 infection is a common complication in patients with COVID-19. Cardiac microthrombosis as a complication of SARS-CoV-2 infection is the primary cause of cardiac injury and death in patietns with severe COVID-19. In this study, we performed single-cell sequencing analysis of the right ventricular free wall tissue from healthy donors, patients who died during the hypercoagulable period of characteristic coagulation abnormality (CAC), and patients who died during the fibrinolytic period of CAC. We collected 61,187 cells enriched in 24 immune cell subsets and 13 cardiac-resident cell subsets. We found that in the course of SARS-CoV-2 infected heart microthrombus, MYO1ERASGEF1Bmonocyte-derived macrophages promoted hyperactivation of the immune system and initiated the extrinsic coagulation pathway by activating chemokines CCL3, CCL5. This series of events is the main cause of cardiac microthrombi following SARS-CoV-2 infection. In a SARS-CoV-2 infected heart microthrombus, excessive immune activation is accompanied by an increase in cellular iron content, which in turn promotes oxidative stress and intensifies intercellular competition. This induces cells to alter their metabolic environment, resulting in increased sugar uptake via the glycosaminoglycan synthesis pathway. In addition, high levels of reactive oxygen species generated by elevated iron levels promote increased endogenous malondialdehyde synthesis in a subpopulation of cardiac endothelial cells. This exacerbates endothelial cell dysfunction and exacerbates the coagulopathy process.
Integration of perioperative features and intragraft TCF7L2 expression to predict lipid metabolic disorder in liver transplant recipients
An insect cell-derived extracellular vesicle-based gB vaccine elicits robust adaptive immune responses against Epstein-Barr virus
Epstein-Barr virus (EBV), the first identified human tumor virus, is implicated in various human malignancies, infectious mononucleosis, and more recently, multiple sclerosis. Prophylactic vaccines have the potential to effectively prevent EBV infection. Glycoprotein B (gB) serves as the fusogen and plays a pivotal role in the virus entry process, making it a critical target for EBV vaccine development. Surface membrane proteins of enveloped viruses serve as native conformational antigens, making them susceptible to immune recognition. Utilizing lipid membrane-bound viral antigens is a promising strategy for effective vaccine presentation in this context. In this study, we employed a truncated design for gB proteins, observing that these truncated gB proteins prompted a substantial release of extracellular vesicles (EVs) in insect cells. We verified that EVs exhibited abundant gB proteins, displaying the typical virus particle morphology and extracellular vesicle characteristics. gB EVs demonstrated a more efficient humoral and cellular immune response compared with the gB ectodomain trimer vaccine in mice. Moreover, the antisera induced by the gB EVs vaccine exhibited robust antibody-dependent cytotoxicity. Consequently, gB EVs-based vaccines hold significant potential for preventing EBV infection and offer valuable insights for vaccine design.