Detection and Mapping of DNA Methylation with 2D Material Nanopores
DNA methylation is an epigenetic modification involving the addition of a methyl group to DNA, which is heavily involved in gene expression and regulation, thereby critical to the progression of diseases such as cancer. In this work we show that detection and localization of DNA methylation can be achieved with nanopore sensors made of two-dimensional (2D) materials such as graphene and molybdenum di-sulphide (MoS). We label each DNA methylation site with a methyl-CpG binding domain protein (MBD1), and combine molecular dynamics simulations with electronic transport calculations to investigate the translocation of the methylated DNA-MBD1 complex through 2D material nanopores under external voltage biases. The passage of the MBD1-labeled methylation site through the pore is identified by dips in the current blockade induced by the DNA strand, as well as by peaks in the transverse electronic sheet current across the 2D layer. The position of the methylation sites can be clearly recognized by the relative positions of the dips in the recorded ionic current blockade with an estimated error ranging from 0% to 16%. Finally, we define the spatial resolution of the 2D material nanopore device as the minimal distance between two methylation sites identified within a single measurement, which is 15 base pairs by ionic current recognition, but as low as 10 base pairs by transverse electronic conductance detection, indicating better resolution with this latter technique. The present approach opens a new route for precise and efficient profiling of DNA methylation.
Understanding the effect of MXene in a TMO/MXene hybrid catalyst for the oxygen evolution reaction
Very recently, it has been reported that mixed transition metal oxide (TMO)/MXene catalysts show improved performance over TMO only catalysts for the oxygen evolution reaction (OER). However, the reasoning behind this observation is unknown. In this work mixed Co(OH)/TiCT were prepared and characterized for the OER using ex situ and operando spectroscopy techniques in order to initiate the understanding of why mixed TMO/MXene materials show better performances compared to TMO only catalysts. This work shows that the improved electrocatalysis for the composite material compared to the TMO only catalyst is due to the presence of higher Co oxide oxidation states at lower OER overpotentials for the mixed TMO/MXene catalysts. Furthermore, the presence of the MXene allows for a more mechanically robust film during OER, making the film more stable. Finally, our results show that small amounts of MXene are more advantageous for the OER during long-term stability measurements, which is linked to the formation of TiO. The sensitivity of MXene oxidation ultimately limits TMO/MXene composites under alkaline OER conditions, meaning mass fractions must be carefully considered when designing such a catalyst to minimize the residual TiO formed during its lifetime.
MXene functionalized collagen biomaterials for cardiac tissue engineering driving iPSC-derived cardiomyocyte maturation
Electroconductive biomaterials are gaining significant consideration for regeneration in tissues where electrical functionality is of crucial importance, such as myocardium, neural, musculoskeletal, and bone tissue. In this work, conductive biohybrid platforms were engineered by blending collagen type I and 2D MXene (TiCT) and afterwards covalently crosslinking; to harness the biofunctionality of the protein component and the increased stiffness and enhanced electrical conductivity (matching and even surpassing native tissues) that two-dimensional titanium carbide provides. These MXene platforms were highly biocompatible and resulted in increased proliferation and cell spreading when seeded with fibroblasts. Conversely, they limited bacterial attachment (Staphylococcus aureus) and proliferation. When neonatal rat cardiomyocytes (nrCMs) were cultured on the substrates increased spreading and viability up to day 7 were studied when compared to control collagen substrates. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were seeded and stimulated using electric-field generation in a custom-made bioreactor. The combination of an electroconductive substrate with an external electrical field enhanced cell growth, and significantly increased cx43 expression. This in vitro study convincingly demonstrates the potential of this engineered conductive biohybrid platform for cardiac tissue regeneration.
Twist-tunable polaritonic nanoresonators in a van der Waals crystal
Optical nanoresonators are key building blocks in various nanotechnological applications (e.g., spectroscopy) due to their ability to effectively confine light at the nanoscale. Recently, nanoresonators based on phonon polaritons (PhPs)-light coupled to lattice vibrations-in polar crystals (e.g., SiC, or h-BN) have attracted much attention due to their strong field confinement, high quality factors, and their potential to enhance the photonic density of states at mid-infrared (mid-IR) frequencies, where numerous molecular vibrations reside. Here, we introduce a new class of mid-IR nanoresonators that not only exhibit the extraordinary properties previously reported, but also incorporate a new degree of freedom: twist tuning, i.e., the possibility of controlling their spectral response by simply rotating the constituent material. To achieve this result, we place a pristine slab of the van der Waals (vdW) α-MoO crystal, which supports in-plane hyperbolic PhPs, on an array of metallic ribbons. This sample design based on electromagnetic engineering, not only allows the definition of α-MoO nanoresonators with low losses (quality factors, Q, up to 200), but also enables a broad spectral tuning of the polaritonic resonances (up to 32 cm, i.e., up to ~6 times their full width at half maximum, FWHM ~5 cm) by a simple in-plane rotation of the same slab (from 0 to 45°). These results open the door to the development of tunable and low-loss IR nanotechnologies, fundamental requirements for their implementation in molecular sensing, emission or photodetection applications.
High durability and stability of 2D nanofluidic devices for long-term single-molecule sensing
Nanopores in two-dimensional (2D) membranes hold immense potential in single-molecule sensing, osmotic power generation, and information storage. Recent advances in 2D nanopores, especially on single-layer MoS, focus on the scalable growth and manufacturing of nanopore devices. However, there still remains a bottleneck in controlling the nanopore stability in atomically thin membranes. Here, we evaluate the major factors responsible for the instability of the monolayer MoS nanopores. We identify chemical oxidation and delamination of monolayers from their underlying substrates as the major reasons for the instability of MoS nanopores. Surface modification of the substrate and reducing the oxygen from the measurement solution improves nanopore stability and dramatically increases their shelf-life. Understanding nanopore growth and stability can provide insights into controlling the pore size, shape and can enable long-term measurements with a high signal-to-noise ratio and engineering durable nanopore devices.
Theoretical prediction and shape-controlled synthesis of two-dimensional semiconductive NiTeO
Current progress in two-dimensional (2D) materials explorations leads to constant specie enrichments of possible advanced materials down to two dimensions. The metal chalcogenide-based 2D materials are promising grounds where many adjacent territories are waiting to be explored. Here, a stable monolayer NiTeO (NTO) structure was computationally predicted and its stacked 2D nanosheets experimentally synthesized. Theoretical design undergoes featuring coordination of metalloid chalcogen, slicing the bulk structure, geometrical optimizations and stability study. The predicted layered NTO structure is realized in nanometer-thick nanosheets via a one-pot shape-controlled hydrothermal synthesis. Compared to the bulk, the 2D NTO own a lowered bandgap energy, more sensitive wavelength selectivity and an emerging photocatalytic hydrogen evolution ability under visible light. Beside a new 2D NTO with the optoelectrical and photocatalytic merits, its existing polar space group, structural specification, and design route are hoped to benefit 2D semiconductor innovations both in species enrichment and future applications.
Coulomb engineering of two-dimensional Mott materials
Two-dimensional materials can be strongly influenced by their surroundings. A dielectric environment screens and reduces the Coulomb interaction between electrons in the two-dimensional material. Since in Mott materials the Coulomb interaction is responsible for the insulating state, manipulating the dielectric screening provides direct control over Mottness. Our many-body calculations reveal the spectroscopic fingerprints of such Coulomb engineering: we demonstrate eV-scale changes to the position of the Hubbard bands and show a Coulomb engineered insulator-to-metal transition. Based on our proof-of-principle calculations, we discuss the (feasible) conditions under which our scenario of Coulomb engineering of Mott materials can be realized experimentally.
Biodegradable albumen dielectrics for high-mobility MoS phototransistors
This work demonstrates the fabrication and characterization of single-layer MoS field-effect transistors using biodegradable albumen (chicken eggwhite) as gate dielectric. By introducing albumen as an insulator for MoS transistors high carrier mobilities (up to ~90 cm V s) are observed, which is remarkably superior to that obtained with commonly used SiO dielectric which we attribute to ionic gating due to the formation of an electric double layer in the albumen MoS interface. In addition, the investigated devices are characterized upon illumination, observing responsivities of 4.5 AW (operated in photogating regime) and rise times as low as 52 ms (operated in photoconductivity regime). The presented study reveals the combination of albumen with van der Waals materials for prospective biodegradable and biocompatible optoelectronic device applications. Furthermore, the demonstrated universal fabrication process can be easily adopted to fabricate albumen-based devices with any other van der Waals material.
Disorder-induced bulk photovoltaic effect in a centrosymmetric van der Waals material
Sunlight is widely seen as one of the most abundant forms of renewable energy, with photovoltaic cells based on pn junctions being the most commonly used platform attempting to harness it. Unlike in conventional photovoltaic cells, the bulk photovoltaic effect (BPVE) allows for the generation of photocurrent and photovoltage in a single material without the need to engineer a pn junction and create a built-in electric field, thus offering a solution that can potentially exceed the Shockley-Queisser efficiency limit. However, it requires a material with no inversion symmetry and is therefore absent in centrosymmetric materials. Here, we demonstrate that breaking the inversion symmetry by structural disorder can induce BPVE in ultrathin PtSe, a centrosymmetric semiconducting van der Waals material. Homogenous illumination of defective PtSe by linearly and circularly polarized light results in a photoresponse termed as linear photogalvanic effect (LPGE) and circular photogalvanic effect (CPGE), which is mostly absent in the pristine crystal. First-principles calculations reveal that LPGE originates from Se vacancies that act as asymmetric scattering centers for the photo-generated electron-hole pairs. Our work emphasizes the importance of defects to induce photovoltaic functionality in centrosymmetric materials and shows how the range of materials suitable for light sensing and energy-harvesting applications can be extended.
Exfoliation procedure-dependent optical properties of solution deposited MoS films
The development of high-precision large-area optical coatings and devices comprising low-dimensional materials hinges on scalable solution-based manufacturability with control over exfoliation procedure-dependent effects. As such, it is critical to understand the influence of technique-induced transition metal dichalcogenide (TMDC) optical properties that impact the design, performance, and integration of advanced optical coatings and devices. Here, we examine the optical properties of semiconducting MoS films from the exfoliation formulations of four prominent approaches: solvent-mediated exfoliation, chemical exfoliation with phase reconversion, redox exfoliation, and native redox exfoliation. The resulting MoS films exhibit distinct refractive indices (), extinction coefficients (), dielectric functions (ε and ε), and absorption coefficients (α). For example, a large index contrast of Δ ≈ 2.3 is observed. These exfoliation procedures and related chemistries produce different exfoliated flake dimensions, chemical impurities, carrier doping, and lattice strain that influence the resulting optical properties. First-principles calculations further confirm the impact of lattice defects and doping characteristics on MoS optical properties. Overall, incomplete phase reconfiguration (from 1T to mixed crystalline 2H and amorphous phases), lattice vacancies, intraflake strain, and Mo oxidation largely contribute to the observed differences in the reported MoS optical properties. These findings highlight the need for controlled technique-induced effects as well as the opportunity for continued development of, and improvement to, liquid phase exfoliation methodologies. Such chemical and processing-induced effects present compelling routes to engineer exfoliated TMDC optical properties toward the development of next-generation high-performance mirrors, narrow bandpass filters, and wavelength-tailored absorbers.
Linear indium atom chains at graphene edges
The presence of metal atoms at the edges of graphene nanoribbons (GNRs) opens new possibilities toward tailoring their physical properties. We present here formation and high-resolution characterization of indium (In) chains on the edges of graphene-supported GNRs. The GNRs are formed when adsorbed hydrocarbon contamination crystallizes via laser heating into small ribbon-like patches of a second graphitic layer on a continuous graphene monolayer and onto which In is subsequently physical vapor deposited. Using aberration-corrected scanning transmission electron microscopy (STEM), we find that this leads to the preferential decoration of the edges of the overlying GNRs with multiple In atoms along their graphitic edges. Electron-beam irradiation during STEM induces migration of In atoms along the edges of the GNRs and triggers the formation of longer In atom chains during imaging. Density functional theory (DFT) calculations of GNRs similar to our experimentally observed structures indicate that both bare zigzag (ZZ) GNRs as well as In-terminated ZZ-GNRs have metallic character, whereas in contrast, In termination induces metallicity for otherwise semiconducting armchair (AC) GNRs. Our findings provide insights into the creation and properties of long linear metal atom chains at graphitic edges.
Mechanically-tunable bandgap closing in 2D graphene phononic crystals
We present a tunable phononic crystal which can be switched from a mechanically insulating to a mechanically conductive (transmissive) state. Specifically, in our simulations for a phononic lattice under biaxial tension ( = = 0.01 N m), we find a bandgap for out-of-plane phonons in the range of 48.8-56.4 MHz, which we can close by increasing the degree of tension uniaxiality ( / ) to 1.7. To manipulate the tension distribution, we design a realistic device of finite size, where / is tuned by applying a gate voltage to a phononic crystal made from suspended graphene. We show that the bandgap closing can be probed via acoustic transmission measurements and that the phononic bandgap persists even after the inclusion of surface contaminants and random tension variations present in realistic devices. The proposed system acts as a transistor for MHz-phonons with an on/off ratio of 10 (100 dB suppression) and is thus a valuable extension for phonon logic applications. In addition, the transition from conductive to isolating can be seen as a mechanical analogue to a metal-insulator transition and allows tunable coupling between mechanical entities (e.g. mechanical qubits).
Electronic excitations and spin interactions in chromium trihalides from embedded many-body wavefunctions
Although chromium trihalides are widely regarded as a promising class of two-dimensional magnets for next-generation devices, an accurate description of their electronic structure and magnetic interactions has proven challenging to achieve. Here, we quantify electronic excitations and spin interactions in Cr ( = Cl, Br, I) using embedded many-body wavefunction calculations and fully generalized spin Hamiltonians. We find that the three trihalides feature comparable -shell excitations, consisting of a high-spin ground state lying 1.5-1.7 eV below the first excited state ( ). CrCl exhibits a single-ion anisotropy = - 0.02 meV, while the Cr spin-3/2 moments are ferromagnetically coupled through bilinear and biquadratic exchange interactions of = - 0.97 meV and = - 0.05 meV, respectively. The corresponding values for CrBr and CrI increase to = -0.08 meV and = - 0.12 meV for the single-ion anisotropy, = -1.21 meV, = -0.05 meV and = -1.38 meV, = -0.06 meV for the exchange couplings, respectively. We find that the overall magnetic anisotropy is defined by the interplay between and due to magnetic dipole-dipole interaction that favors in-plane orientation of magnetic moments in ferromagnetic monolayers and bulk layered magnets. The competition between the two contributions sets CrCl and CrI as the easy-plane ( + >0) and easy-axis ( + <0) ferromagnets, respectively. The differences between the magnets trace back to the atomic radii of the halogen ligands and the magnitude of spin-orbit coupling. Our findings are in excellent agreement with recent experiments, thus providing reference values for the fundamental interactions in chromium trihalides.
Tailoring polarization in WSe quantum emitters through deterministic strain engineering
Quantum emitters in transition metal dichalcogenides (TMDs) have recently emerged as a promising platform for generating single photons for optical quantum information processing. In this work, we present an approach for deterministically controlling the polarization of fabricated quantum emitters in a tungsten diselenide (WSe) monolayer. We employ novel nanopillar geometries with long and sharp tips to induce a controlled directional strain in the monolayer, and we report on fabricated WSe emitters producing single photons with a high degree of polarization (99 ± 4%) and high purity ( (0) = 0.030 ± 0.025). Our work paves the way for the deterministic integration of TMD-based quantum emitters for future photonic quantum technologies.