Trustworthy and Reliable Deep Learning-based Cyberattack Detection in Industrial IoT
A fundamental expectation of the stakeholders from the Industrial Internet of Things (IIoT) is its trustworthiness and sustainability to avoid the loss of human lives in performing a critical task. A trustworthy IIoT-enabled network encompasses fundamental security characteristics such as trust, privacy, security, reliability, resilience and safety. The traditional security mechanisms and procedures are insufficient to protect these networks owing to protocol differences, limited update options, and older adaptations of the security mechanisms. As a result, these networks require novel approaches to increase trust-level and enhance security and privacy mechanisms. Therefore, in this paper, we propose a novel approach to improve the trustworthiness of IIoT-enabled networks. We propose an accurate and reliable supervisory control and data acquisition (SCADA) network-based cyberattack detection in these networks. The proposed scheme combines the deep learning-based Pyramidal Recurrent Units (PRU) and Decision Tree (DT) with SCADA-based IIoT networks. We also use an ensemble-learning method to detect cyberattacks in SCADA-based IIoT networks. The non-linear learning ability of PRU and the ensemble DT address the sensitivity of irrelevant features, allowing high detection rates. The proposed scheme is evaluated on fifteen datasets generated from SCADA-based networks. The experimental results show that the proposed scheme outperforms traditional methods and machine learning-based detection approaches. The proposed scheme improves the security and associated measure of trustworthiness in IIoT-enabled networks.
Severity Assessment of COVID-19 Based on Feature Extraction and V-Descriptors
Digital image feature recognition is significant to industrial information applications, such as bioengineering, medical diagnosis, and machinery industry. In order to supply an effective and reasonable technology of the severity assessment mission of coronavirus disease (COVID-19), in this article, we propose a new method that identifies rich features of lung infections from a chest computed tomography (CT) image, and then assesses the severity of COVID-19 based on the extracted features. First, in a chest CT image, the lung contours are corrected for the segmentation of bilateral lungs. Then, the lung contours and areas are obtained from the lung regions. Next, the coarseness, contrast, roughness, and entropy texture features are extracted to confirm the COVID-19 infected regions, and then the lesion contours are extracted from the infected regions. Finally, the texture features and V-descriptors are fused as an assessment descriptor for the COVID-19 severity estimation. In the experiments, we show the feature extraction and lung lesion segmentation results based on some typical COVID-19 infected CT images. In the lesion contour reconstruction experiments, the performance of V-descriptors is compared with some different methods, and various feature scores indicate that the proposed assessment descriptor reflects the infected ratio and the density feature of the lesions well, which can estimate the severity of COVID-19 infection more accurately.
CovTANet: A Hybrid Tri-Level Attention-Based Network for Lesion Segmentation, Diagnosis, and Severity Prediction of COVID-19 Chest CT Scans
Rapid and precise diagnosis of COVID-19 is one of the major challenges faced by the global community to control the spread of this overgrowing pandemic. In this article, a hybrid neural network is proposed, named CovTANet, to provide an end-to-end clinical diagnostic tool for early diagnosis, lesion segmentation, and severity prediction of COVID-19 utilizing chest computer tomography (CT) scans. A multiphase optimization strategy is introduced for solving the challenges of complicated diagnosis at a very early stage of infection, where an efficient lesion segmentation network is optimized initially, which is later integrated into a joint optimization framework for the diagnosis and severity prediction tasks providing feature enhancement of the infected regions. Moreover, for overcoming the challenges with diffused, blurred, and varying shaped edges of COVID lesions with novel and diverse characteristics, a novel segmentation network is introduced, namely tri-level attention-based segmentation network. This network has significantly reduced semantic gaps in subsequent encoding-decoding stages, with immense parallelization of multiscale features for faster convergence providing considerable performance improvement over traditional networks. Furthermore, a novel tri-level attention mechanism has been introduced, which is repeatedly utilized over the network, combining channel, spatial, and pixel attention schemes for faster and efficient generalization of contextual information embedded in the feature map through feature recalibration and enhancement operations. Outstanding performances have been achieved in all three tasks through extensive experimentation on a large publicly available dataset containing 1110 chest CT-volumes, which signifies the effectiveness of the proposed scheme at the current stage of the pandemic.
COVID-19: Automatic Detection of the Novel Coronavirus Disease From CT Images Using an Optimized Convolutional Neural Network
It is widely known that a quick disclosure of the COVID-19 can help to reduce its spread dramatically. Transcriptase polymerase chain reaction could be a more useful, rapid, and trustworthy technique for the evaluation and classification of the COVID-19 disease. Currently, a computerized method for classifying computed tomography (CT) images of chests can be crucial for speeding up the detection while the COVID-19 epidemic is rapidly spreading. In this article, the authors have proposed an optimized convolutional neural network model (ADECO-CNN) to divide infected and not infected patients. Furthermore, the ADECO-CNN approach is compared with pretrained convolutional neural network (CNN)-based VGG19, GoogleNet, and ResNet models. Extensive analysis proved that the ADECO-CNN-optimized CNN model can classify CT images with 99.99% accuracy, 99.96% sensitivity, 99.92% precision, and 99.97% specificity.
Augmented Multicenter Graph Convolutional Network for COVID-19 Diagnosis
Chest computed tomography (CT) scans of coronavirus 2019 (COVID-19) disease usually come from multiple datasets gathered from different medical centers, and these images are sampled using different acquisition protocols. While integrating multicenter datasets increases sample size, it suffers from inter-center heterogeneity. To address this issue, we propose an augmented multicenter graph convolutional network (AM-GCN) to diagnose COVID-19 with steps as follows. First, we use a 3-D convolutional neural network to extract features from the initial CT scans, where a ghost module and a multitask framework are integrated to improve the network's performance. Second, we exploit the extracted features to construct a multicenter graph, which considers the intercenter heterogeneity and the disease status of training samples. Third, we propose an augmentation mechanism to augment training samples which forms an augmented multicenter graph. Finally, the diagnosis results are obtained by inputting the augmented multi-center graph into GCN. Based on 2223 COVID-19 subjects and 2221 normal controls from seven medical centers, our method has achieved a mean accuracy of 97.76%. The code for our model is made publicly..
EDL-COVID: Ensemble Deep Learning for COVID-19 Case Detection From Chest X-Ray Images
Effective screening of COVID-19 cases has been becoming extremely important to mitigate and stop the quick spread of the disease during the current period of COVID-19 pandemic worldwide. In this article, we consider radiology examination of using chest X-ray images, which is among the effective screening approaches for COVID-19 case detection. Given deep learning is an effective tool and framework for image analysis, there have been lots of studies for COVID-19 case detection by training deep learning models with X-ray images. Although some of them report good prediction results, their proposed deep learning models might suffer from overfitting, high variance, and generalization errors caused by noise and a limited number of datasets. Considering ensemble learning can overcome the shortcomings of deep learning by making predictions with multiple models instead of a single model, we propose , an ensemble deep learning model employing deep learning and ensemble learning. The EDL-COVID model is generated by combining multiple snapshot models of COVID-Net, which has pioneered in an open-sourced COVID-19 case detection method with deep neural network processed chest X-ray images, by employing a proposed weighted averaging ensembling method that is aware of different sensitivities of deep learning models on different classes types. Experimental results show that EDL-COVID offers promising results for COVID-19 case detection with an accuracy of 95%, better than COVID-Net of 93.3%.
An Effective Deep Neural Network for Lung Lesions Segmentation From COVID-19 CT Images
Automatic segmentation of lung lesions from COVID-19 computed tomography (CT) images can help to establish a quantitative model for diagnosis and treatment. For this reason, this article provides a new segmentation method to meet the needs of CT images processing under COVID-19 epidemic. The main steps are as follows: First, the proposed region of interest extraction implements patch mechanism strategy to satisfy the applicability of 3-D network and remove irrelevant background. Second, 3-D network is established to extract spatial features, where 3-D attention model promotes network to enhance target area. Then, to improve the convergence of network, a combination loss function is introduced to lead gradient optimization and training direction. Finally, data augmentation and conditional random field are applied to realize data resampling and binary segmentation. This method was assessed with some comparative experiment. By comparison, the proposed method reached the highest performance. Therefore, it has potential clinical applications.
Residual Learning Diagnosis Detection: An Advanced Residual Learning Diagnosis Detection System for COVID-19 in Industrial Internet of Things
Due to the fast transmission speed and severe health damage, COVID-19 has attracted global attention. Early diagnosis and isolation are effective and imperative strategies for epidemic prevention and control. Most diagnostic methods for the COVID-19 is based on nucleic acid testing (NAT), which is expensive and time-consuming. To build an efficient and valid alternative of NAT, this article investigates the feasibility of employing computed tomography images of lungs as the diagnostic signals. Unlike normal lungs, parts of the lungs infected with the COVID-19 developed lesions, ground-glass opacity, and bronchiectasis became apparent. Through a public dataset, in this article, we propose an advanced residual learning diagnosis detection (RLDD) scheme for the COVID-19 technique, which is designed to distinguish positive COVID-19 cases from heterogeneous lung images. Besides the advantage of high diagnosis effectiveness, the designed residual-based COVID-19 detection network can efficiently extract the lung features through small COVID-19 samples, which removes the pretraining requirement on other medical datasets. In the test set, we achieve an accuracy of 91.33%, a precision of 91.30%, and a recall of 90%. For the batch of 150 samples, the assessment time is only 4.7 s. Therefore, RLDD can be integrated into the application programming interface and embedded into the medical instrument to improve the detection efficiency of COVID-19.
Intelligent Intraoperative Haptic-AR Navigation for COVID-19 Lung Biopsy Using Deep Hybrid Model
A novel intelligent navigation technique for accurate image-guided COVID-19 lung biopsy is addressed, which systematically combines augmented reality (AR), customized haptic-enabled surgical tools, and deep neural network to achieve customized surgical navigation. Clinic data from 341 COVID-19 positive patients, with 1598 negative control group, have collected for the model synergy and evaluation. Biomechanics force data from the experiment are applied a WPD-CNN-LSTM (WCL) to learn a new patient-specific COVID-19 surgical model, and the ResNet was employed for the intraoperative force classification. To boost the user immersion and promote the user experience, intro-operational guiding images have combined with the haptic-AR navigational view. Furthermore, a 3-D user interface (3DUI), including all requisite surgical details, was developed with a real-time response guaranteed. Twenty-four thoracic surgeons were invited to the objective and subjective experiments for performance evaluation. The root-mean-square error results of our proposed WCL model is 0.0128, and the classification accuracy is 97%, which demonstrated that the innovative AR with deep learning (DL) intelligent model outperforms the existing perception navigation techniques with significantly higher performance. This article shows a novel framework in the interventional surgical integration for COVID-19 and opens the new research about the integration of AR, haptic rendering, and deep learning for surgical navigation.
A Lightweight Mutual Authentication and Privacy-preservation Scheme for Intelligent Wearable Devices in Industrial-CPS
Industry 5.0 is the digitalization, automation and data exchange of industrial processes that involve artificial intelligence, Industrial Internet of Things (IIoT), and Industrial Cyber-Physical Systems (I-CPS). In healthcare, I-CPS enables the intelligent wearable devices to gather data from the real-world and transmit to the virtual world for decision-making. I-CPS makes our lives comfortable with the emergence of innovative healthcare applications. Similar to any other IIoT paradigm, I-CPS capable healthcare applications face numerous challenging issues. The resource-constrained nature of wearable devices and their inability to support complex security mechanisms provide an ideal platform to malevolent entities for launching attacks. To preserve the privacy of wearable devices and their data in an I-CPS environment, we propose a lightweight mutual authentication scheme. Our scheme is based on client-server interaction model that uses symmetric encryption for establishing secured sessions among the communicating entities. After mutual authentication, the privacy risk associated with a patient data is predicted using an AI-enabled Hidden Markov Model (HMM). We analyzed the robustness and security of our scheme using BurrowsAbadiNeedham (BAN) logic. This analysis shows that the use of lightweight security primitives for the exchange of session keys makes the proposed scheme highly resilient in terms of security, efficiency, and robustness. Finally, the proposed scheme incurs nominal overhead in terms of processing, communication and storage and is capable to combat a wide range of adversarial threats.
Deep Reinforcement Learning for Edge Service Placement in Softwarized Industrial Cyber-Physical System
Future industrial cyber-physical system (CPS) devices are expected to request a large amount of delay-sensitive services that need to be processed at the edge of a network. Due to limited resources, service placement at the edge of the cloud has attracted significant attention. Although there are many methods of design schemes, the service placement problem in industrial CPS has not been well studied. Furthermore, none of existing schemes can optimize service placement, workload scheduling, and resource allocation under uncertain service demands. To address these issues, we first formulate a joint optimization problem of service placement, workload scheduling, and resource allocation in order to minimize service response delay. We then propose an improved deep Q-network (DQN)-based service placement algorithm. The proposed algorithm can achieve an optimal resource allocation by means of convex optimization where the service placement and workload scheduling decisions are assisted by means of DQN technology. The experimental results verify that the proposed algorithm, compared with existing algorithms, can reduce the average service response time by 8-10%.
A Secured and Intelligent Communication Scheme for IIoT-enabled Pervasive Edge Computing
Industrial Internet of Things (IIoT) ensures reliable and efficient data exchanges among the industrial processes using Artificial Intelligence (AI) within the cyber-physical systems. In the IIoT ecosystem, devices of industrial applications communicate with each other with little human intervention. They need to act intelligently to safeguard the data confidentiality and devices' authenticity. The ability to gather, process, and store real-time data depends on the quality of data, network connectivity, and processing capabilities of these devices. Pervasive Edge Computing (PEC) is gaining popularity nowadays due to the resource limitations imposed on the sensor-embedded IIoT devices. PEC processes the gathered data at the network edge to reduce the response time for these devices. However, PEC faces numerous research challenges in terms of secured communication, network connectivity, and resource utilization of the edge servers. To address these challenges, we propose a secured and intelligent communication scheme for PEC in an IIoT-enabled infrastructure. In the proposed scheme, forged identities of adversaries, i.e., Sybil devices, are detected by IIoT devices and shared with edge servers to prevent upstream transmission of their malicious data. Upon Sybil attack detection, each edge server executes a parallel Artificial Bee Colony (pABC) algorithm to perform optimal network configuration of IIoT devices. Each edge server performs the job migration to their neighboring servers for load balancing and better network performance, based on their processing and storage capabilities. The experimental results justify the efficiency of our proposed scheme in terms of Sybil attack detection, the convergence curves of our pABC algorithm, delay, throughput, and control overhead of data communication using PEC for IIoT.
Enabling Privacy-Assured Fog-Based Data Aggregation in E-Healthcare Systems
Wearable body area network is a key component of the modern-day e-healthcare system (e.g., telemedicine), particularly as the number and types of wearable medical monitoring systems increase. The importance of such systems is reinforced in the current COVID-19 pandemic. In addition to the need for a secure collection of medical data, there is also a need to process data in real-time. In this article, we design an improved symmetric homomorphic cryptosystem and a fog-based communication architecture to support delay- or time-sensitive monitoring and other-related applications. Specifically, medical data can be analyzed at the fog servers in a secure manner. This will facilitate decision making, for example, allowing relevant stakeholders to detect and respond to emergency situations, based on real-time data analysis. We present two attack games to demonstrate that our approach is secure (i.e., chosen-plaintext attack resilience under the computational Diffie-Hellman assumption), and evaluate the complexity of its computations. A comparative summary of its performance and three other related approaches suggests that our approach enables privacy-assured medical data aggregation, and the simulation experiments using Microsoft Azure further demonstrate the utility of our scheme.
A Model-Based Recurrent Neural Network With Randomness for Efficient Control With Applications
Recently, Recurrent Neural Network (RNN) control schemes for redundant manipulators have been extensively studied. These control schemes demonstrate superior computational efficiency, control precision, and control robustness. However, they lack planning completeness. This paper explains why RNN control schemes suffer from the problem. Based on the analysis, this work presents a new random RNN control scheme, which 1) introduces randomness into RNN to address the planning completeness problem, 2) improves control precision with a new optimization target, 3) improves planning efficiency through learning from exploration. Theoretical analyses are used to prove the global stability, the planning completeness, and the computational complexity of the proposed method. Software simulation is provided to demonstrate the improved robustness against noise, the planning completeness and the improved planning efficiency of the proposed method over benchmark RNN control schemes. Real-world experiments are presented to demonstrate the application of the proposed method.
Three-Dimensional Imaging by Self-Reference Single-Channel Digital Incoherent Holography
Digital holography offers a reliable and fast method to image a three-dimensional scene from a single perspective. This article reviews recent developments of self-reference single-channel incoherent hologram recorders. Hologram recorders in which both interfering beams, commonly referred to as the signal and the reference beams, originate from the same observed objects are considered as self-reference systems. Moreover, the hologram recorders reviewed herein are configured in a setup of a single channel interferometer. This unique configuration is achieved through the use of one or more spatial light modulators.
Model-Driven Safety Analysis of Closed-Loop Medical Systems
In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure.
On Design and Implementation of Neural-Machine Interface for Artificial Legs
The quality of life of leg amputees can be improved dramatically by using a cyber physical system (CPS) that controls artificial legs based on neural signals representing amputees' intended movements. The key to the CPS is the neural-machine interface (NMI) that senses electromyographic (EMG) signals to make control decisions. This paper presents a design and implementation of a novel NMI using an embedded computer system to collect neural signals from a physical system - a leg amputee, provide adequate computational capability to interpret such signals, and make decisions to identify user's intent for prostheses control in real time. A new deciphering algorithm, composed of an EMG pattern classifier and a post-processing scheme, was developed to identify the user's intended lower limb movements. To deal with environmental uncertainty, a trust management mechanism was designed to handle unexpected sensor failures and signal disturbances. Integrating the neural deciphering algorithm with the trust management mechanism resulted in a highly accurate and reliable software system for neural control of artificial legs. The software was then embedded in a newly designed hardware platform based on an embedded microcontroller and a graphic processing unit (GPU) to form a complete NMI for real time testing. Real time experiments on a leg amputee subject and an able-bodied subject have been carried out to test the control accuracy of the new NMI. Our extensive experiments have shown promising results on both subjects, paving the way for clinical feasibility of neural controlled artificial legs.
Toward Autonomous Mobile Sensor Networks Technology
Mobile sensor networking technology has attracted considerable attention in various research communities in recent years due to their widespread applications in civilian and military environments. One objective when using mobile sensors is to obtain maximum field coverage by properly deploying sensor nodes. In many real-world applications a priori knowledge about the best deployment position for the sensors is not available. However, the motion capability of the sensors could allow each node to adjust its position (i.e. relocate) so that a better (and ultimately maximal) coverage is achieved. In this paper, a novel autonomous joint sensing range and relocation control algorithm is presented that achieves improved coverage and network lifetime at the same time. In the proposed algorithm, the sensing range of each sensor is adjusted iteratively based on its residual energy. At the same time, the sensor is directed to move within its corresponding multiplicatively weighted Voronoi (MW-Voronoi) region to ultimately increase sensing coverage in the field. Simulation results demonstrate the efficacy of the technique.
System Error Calibration in Large Datasets of Wireless Channel Sounding for Industrial Applications
In industrial applications, the large comprehensive wireless channel impulse response (CIR) reference dataset, measured by National Institute of Standards and Technology (NIST), has been a useful tool for understanding propagation within factory environments. The NIST CIR reference dataset is obtained using a precision channel sounder instrument where transmitter and receiver are time-synchronized by two rubidium clocks. While the accuracy of the NIST CIRs is much higher than the CIRs measured by general commercial digital receiver, two types of system errors have been discovered within the dataset from the perspective of signal processing. These errors are significant for wireless localization, physical layer security, and related applications. To calibrate the CIR, two channel sounder error calibration methods (CSEC) is proposed: the CSEC based on phase compensation and carrier frequency offset recovery. Our results reveal that the CSEC method can improve the accuracy of the CIR to the accuracy that precise instruments cannot achieve. To demonstrate the consequence of these systemic errors, a case study involving physical layer authentication is investigated showing a marked improvement in authentication accuracy after the systemic errors in the dataset are removed. Moreover, the CSEC method may be used to correct other CIR datasets with similar systemic errors.