Basket Trials: Past, Present, and Future
Large-scale tumor molecular profiling has revealed that diverse cancer histologies are driven by common pathways with unifying biomarkers that can be exploited therapeutically. Disease-agnostic basket trials have been increasingly utilized to test biomarker-driven therapies across cancer types. These trials have led to drug approvals and improved the lives of patients while simultaneously advancing our understanding of cancer biology. This review focuses on the practicalities of implementing basket trials, with an emphasis on molecularly targeted trials. We examine the biologic subtleties of genomic biomarker and patient selection, discuss previous successes in drug development facilitated by basket trials, describe certain novel targets and drugs, and emphasize practical considerations for participant recruitment and study design. This review also highlights strategies for aiding patient access to basket trials. As basket trials become more common, steps to ensure equitable implementation of these studies will be critical for molecularly targeted drug development.
RAS and SHOC2 Roles in RAF Activation and Therapeutic Considerations
Mutations in RAS proteins play a pivotal role in the development of human cancers, driving persistent RAF activation and deregulating the Mitogen-Activated Protein Kinase (MAPK) signaling pathway. While progress has been made in targeting specific oncogenic RAS proteins, effective drug-based therapies for the majority of RAS mutations remain limited. Recent investigations on RAS-RAF complexes and the SHOC2-MRAS-PP1C holoenzyme complex have provided crucial insights into the structural and functional aspects of RAF activation within the MAPK signaling pathway. Moreover, these studies have also unveiled new blueprints for developing inhibitors allowing us to think beyond the current RAS and MEK inhibitors. In this review, we explore the roles of RAS and SHOC2 in activating RAF and discuss potential therapeutic strategies to target these proteins. A comprehensive understanding of the molecular interactions involved in RAF activation and their therapeutic implications holds the potential to drive innovative approaches in combating RAS/RAF-driven cancers.
Next-Generation Therapies for Multiple Myeloma
Recent therapeutic advances have significantly improved the outcome for patients with multiple myeloma (MM). The backbone of successful standard therapy is the combination of Ikaros degraders, glucocorticoids, and proteasome inhibitors that interfere with the integrity of myeloma-specific superenhancers by directly or indirectly targeting enhancer-bound transcription factors and coactivators that control expression of MM dependency genes. T cell engagers and chimeric antigen receptor T cells redirect patients' own T cells onto defined tumor antigens to kill MM cells. They have induced complete remissions even in end-stage patients. Unfortunately, responses to both conventional therapy and immunotherapy are not durable, and tumor heterogeneity, antigen loss, and lack of T cell fitness lead to therapy resistance and relapse. Novel approaches are under development to target myeloma-specific vulnerabilities, as is the design of multimodality immunological approaches, including and beyond T cells, that simultaneously recognize multiple epitopes to prevent antigen escape and tumor relapse.
Reinventing Radiobiology in the Light of FLASH Radiotherapy
Ultrahigh-dose rate FLASH radiotherapy (FLASH-RT) is a potentially paradigm-shifting treatment modality that holds the promise of expanding the therapeutic index for nearly any cancer. At the heart of this exciting technology comes the capability to ameliorate major normal tissue complications without compromising the efficacy of tumor killing. This combination of benefits has now been termed the FLASH effect and relies on an in vivo validation to rigorously demonstrate the absence of normal tissue toxicity. The FLASH effect occurs when the overall irradiation time is extremely short (<500 ms), and in this review we attempt to understand how FLASH-RT can kill tumors but spare normal tissues-likely the single most pressing question confronting the field today.
The Blood-Brain Barrier: Implications for Experimental Cancer Therapeutics
The blood-brain barrier is critically important for the treatment of both primary and metastatic cancers of the central nervous system (CNS). Clinical outcomes for patients with primary CNS tumors are poor and have not significantly improved in decades. As treatments for patients with extracranial solid tumors improve, the incidence of CNS metastases is on the rise due to suboptimal CNS exposure of otherwise systemically active agents. Despite state-of-the art surgical care and increasingly precise radiation therapy, clinical progress is limited by the ability to deliver an effective dose of a therapeutic agent to all cancerous cells. Given the tremendous heterogeneity of CNS cancers, both across cancer subtypes and within a single tumor, and the range of diverse therapies under investigation, a nuanced examination of CNS drug exposure is needed. With a shared goal, common vocabulary, and interdisciplinary collaboration, the field is poised for renewed progress in the treatment of CNS cancers.
Oncohistones: Hijacking the histone code
Chromatin dysfunction has been implicated in a growing number of cancers especially in children and young adults. In addition to chromatin modifying and remodeling enzymes, mutations in histone genes are linked to human cancers. Since the first reports of hotspot missense mutations affecting key residues at histone H3 tail, studies have revealed how these so-called "oncohistones" dominantly (H3K27M and H3K36M) or locally (H3.3G34R/W) inhibit corresponding histone methyltransferases and misregulate epigenome and transcriptome to promote tumorigenesis. More recently, widespread mutations in all four core histones are identified in diverse cancer types. Furthermore, an "oncohistone-like" protein EZHIP has been implicated in driving childhood ependymomas through a mechanism highly reminiscent of H3K27M mutation. We will review recent progresses on understanding the biochemical, molecular and biological mechanisms underlying the canonical and novel histone mutations. Importantly, these mechanistic insights have identified therapeutic opportunities for oncohistone-driven tumors.
Novel Mouse Models for Cancer Immunology
Mouse models for the study of cancer immunology provide excellent systems in which to test biological mechanisms of the immune response against cancer. Historically, these models have been designed to have different strengths based on the current major research questions at the time. As such, many mouse models of immunology used today were not originally developed to study questions currently plaguing the relatively new field of cancer immunology, but instead have been adapted for such purposes. In this review, we discuss various mouse model of cancer immunology in a historical context as a means to provide a fuller perspective of each model's strengths. From this outlook, we discuss the current state of the art and strategies for tackling future modeling challenges.
CRISPR Screens to Identify Regulators of Tumor Immunity
Cancer immunotherapies, such as immune checkpoint blockade (ICB), have been used in a wide range of tumor types with immense clinical benefit. However, ICB does not work in all patients, and attempts to combine ICB with other immune-based therapies have not lived up to their initial promise. Thus, there is a significant unmet need to discover new targets and combination therapies to extend the benefits of immunotherapy to more patients. Systems biology approaches are well suited for addressing this problem because these approaches enable evaluation of many gene targets simultaneously and ranking their relative importance for a phenotype of interest. As such, loss-of-function CRISPR screens are an emerging set of tools being used to prioritize gene targets for modulating pathways of interest in tumor and immune cells. This review describes the first screens performed to discover cancer immunotherapy targets and the technological advances that will enable next-generation screens.
Nutritional Preconditioning in Cancer Treatment in Relation to DNA Damage and Aging
Dietary restriction (DR) is the most successful nutritional intervention for extending lifespan and preserving health in numerous species. Reducing food intake triggers a protective response that shifts energy resources from growth to maintenance and resilience mechanisms. This so-called survival response has been shown to particularly increase life- and health span and decrease DNA damage in DNA repair-deficient mice exhibiting accelerated aging. Accumulation of DNA damage is the main cause of aging, but also of cancer. Moreover, radiotherapies and most chemotherapies are based on damaging DNA, consistent with their ability to induce toxicity and accelerate aging. Since fasting and DR decrease DNA damage and its effects, nutritional preconditioning holds promise for improving (cancer) therapy and preventing short- and long-term side effects of anticancer treatments. This review provides an overview of the link between aging and cancer, highlights important preclinical studies applying such nutritional preconditioning, and summarizes the first clinical trials implementing nutritional preconditioning in cancer treatment.
The Bidirectional Relationship Between Cancer Epigenetics and Metabolism
Metabolic and epigenetic reprogramming are characteristics of cancer cells that, in many cases, are linked. Oncogenic signaling, diet, and tumor microenvironment each influence the availability of metabolites that are substrates or inhibitors of epigenetic enzymes. Reciprocally, altered expression or activity of chromatin-modifying enzymes can exert direct and indirect effects on cellular metabolism. In this article, we discuss the bidirectional relationship between epigenetics and metabolism in cancer. First, we focus on epigenetic control of metabolism, highlighting evidence that alterations in histone modifications, chromatin remodeling, or the enhancer landscape can drive metabolic features that support growth and proliferation. We then discuss metabolic regulation of chromatin-modifying enzymes and roles in tumor growth and progression. Throughout, we highlight proposed therapeutic and dietary interventions that leverage metabolic-epigenetic cross talk and have the potential to improve cancer therapy.
Analysis of Primary Tumor Specimens for Evaluation of Cancer Therapeutics
The use of drug sensitivity testing to predict drug activity in individual patients has been actively explored for almost 50 years without delivering a generally useful predictive capability. However, extended failure should not be an indicator of futility. This is especially true in cancer research where ultimate success is often preceded by less successful attempts. For example, both immune- and genetic-based targeted therapies for cancer underwent numerous failed attempts before biological understanding, improved targets, and optimized drug development matured to facilitate an arsenal of transformational drugs. Similarly, the concept of directly assessing drug sensitivity of primary tumor biopsies-and the use of this information to help direct therapeutic approaches-has a long history with a definitive learning curve. In this review, we will survey the history of testing as well as the current state of the art for this field. We will present an update on methodologies and approaches, describe the use of these technologies to test cutting-edge drug classes, and describe an increasingly nuanced understanding of tumor types and models for which this strategy is most likely to succeed. We will consider the relative strengths and weaknesses of predicting drug activity across the broad biological context of cancer patients and tumor types. This will include an analysis of the potential for drug sensitivity testing to accurately predict drug activity within each of the biological hallmarks of cancer pathogenesis.
Telomeres and Cancer: Resolving the Paradox
Decades of study on cell cycle regulation have provided great insight into human cellular life span barriers, as well as their dysregulation during tumorigenesis. Telomeres, the extremities of linear chromosomes, perform an essential role in implementing these proliferative boundaries and preventing the propagation of potentially cancerous cells. The tumor-suppressive function of telomeres relies on their ability to initiate DNA damage signaling pathways and downstream cellular events, ranging from cell cycle perturbation to inflammation and cell death. While the tumor-suppressor role of telomeres is undoubtable, recent advances have pointed to telomeres as a major source of many of the genomic aberrations found in both early- and late-stage cancers, including the most recently discovered mutational phenomenon of chromothripsis. Telomere shortening appears as a double-edged sword that can function in opposing directions in carcinogenesis. This review focuses on the current knowledge of the dual role of telomeres in cancer and suggests a new perspective to reconcile the paradox of telomeres and their implications in cancer etiology.
The Multifaceted Role of Regulatory T Cells in Breast Cancer
The microenvironment of breast cancer hosts a dynamic cross talk between diverse players of the immune system. While cytotoxic immune cells are equipped to control tumor growth and metastasis, tumor-corrupted immunosuppressive immune cells strive to impair effective immunity and promote tumor progression. Of these, regulatory T cells (T), the gatekeepers of immune homeostasis, emerge as multifaceted players involved in breast cancer. Intriguingly, clinical observations suggest that blood and intratumoral T can have strong prognostic value, dictated by breast cancer subtype. Accordingly, emerging preclinical evidence shows that T occupy a central role in breast cancer initiation and progression and provide critical support to metastasis formation. Here, T are not only important for immune escape but also promote tumor progression independent of their immune regulatory capacity. Combining insights into T biology with advances made across the rapidly growing field of immuno-oncology is expected to set the stage for the design of more effective immunotherapy strategies.
The Epithelial-to-Mesenchymal Transition (EMT) in Development and Cancer
Epithelial-to-mesenchymal transitions (EMTs) are complex cellular processes where cells undergo dramatic changes in signaling, transcriptional programming, and cell shape, while directing the exit of cells from the epithelium and promoting migratory properties of the resulting mesenchyme. EMTs are essential for morphogenesis during development and are also a critical step in cancer progression and metastasis formation. Here we provide an overview of the molecular regulation of the EMT process during embryo development, focusing on chick and mouse gastrulation and neural crest development. We go on to describe how EMT regulators participate in the progression of pancreatic and breast cancer in mouse models, and discuss the parallels with developmental EMTs and how these help to understand cancer EMTs. We also highlight the differences between EMTs in tumor and in development to arrive at a broader view of cancer EMT. We conclude by discussing how further advances in the field will rely on in vivo dynamic imaging of the cellular events of EMT.
Immune-Based Approaches for the Treatment of Pediatric Malignancies
Immune-based therapies have now been credentialed for pediatric cancers with the robust efficacy of chimeric antigen receptor (CAR) T cells for pediatric B cell acute lymphocytic leukemia (ALL), offering a chance of a cure for children with previously lethal disease and a potentially more targeted therapy to limit treatment-related morbidities. The developmental origins of most pediatric cancers make them ideal targets for immune-based therapies that capitalize on the differential expression of lineage-specific cell surface molecules such as antibodies, antibody-drug conjugates, or CAR T cells, while the efficacy of other therapies that depend on tumor immunogenicity such as immune checkpoint inhibitors has been limited to date. Here we review the current status of immune-based therapies for childhood cancers, discuss challenges to developing immunotherapeutics for these diseases, and outline future directions of pediatric immunotherapy discovery and development.
Investigating Tumor Heterogeneity in Mouse Models
Cancer arises from a single cell through a series of acquired mutations and epigenetic alterations. Tumors gradually develop into a complex tissue comprised of phenotypically heterogeneous cancer cell populations, as well as noncancer cells that make up the tumor microenvironment. The phenotype, or state, of each cancer and stromal cell is influenced by a plethora of cell-intrinsic and cell-extrinsic factors. The diversity of these cellular states promotes tumor progression, enables metastasis, and poses a challenge for effective cancer treatments. Thus, the identification of strategies for the therapeutic manipulation of tumor heterogeneity would have significant clinical implications. A major barrier in the field is the difficulty in functionally investigating heterogeneity in tumors in cancer patients. Here we review how mouse models of human cancer can be leveraged to interrogate tumor heterogeneity and to help design better therapeutic strategies.
Cancer Immunotherapy: Beyond Checkpoint Blockade
Blocking antibodies to the immune checkpoint receptors or their ligands have revolutionized the treatment of diverse malignancies. Many tumors are recognized by adaptive immunity, but these adaptive responses can be inhibited by immunosuppressive mechanisms within the tumor, often through pathways outside of the currently targeted checkpoints. For this reason, only a minority of cancer patients achieve durable responses to current immunotherapies. Multiple novel approaches strive to expand immunotherapy's reach. These may include targeting alternative immune checkpoints. However, many investigational strategies look beyond checkpoint blockade. These include cellular therapies to bypass endogenous immunity and efforts to stimulate new adaptive antitumor responses using vaccines, adjuvants, and combinations with cytotoxic therapy, as well as strategies to inhibit innate immune suppression and modulate metabolism within the tumor microenvironment. The challenge for immunotherapy going forward will be to select rational strategies for overcoming barriers to effective antitumor responses from the myriad possible targets.
The Fanconi Anemia Pathway in Cancer
Fanconi anemia (FA) is a complex genetic disorder characterized by bone marrow failure (BMF), congenital defects, inability to repair DNA interstrand cross-links (ICLs), and cancer predisposition. FA presents two seemingly opposite characteristics: () massive cell death of the hematopoietic stem and progenitor cell (HSPC) compartment due to extensive genomic instability, leading to BMF, and () uncontrolled cell proliferation leading to FA-associated malignancies. The canonical function of the FA proteins is to collaborate with several other DNA repair proteins to eliminate clastogenic (chromosome-breaking) effects of DNA ICLs. Recent discoveries reveal that the FA pathway functions in a critical tumor-suppressor network to preserve genomic integrity by stabilizing replication forks, mitigating replication stress, and regulating cytokinesis. Homozygous germline mutations (biallelic) in 22 FANC genes cause FA, whereas heterozygous germline mutations in some of the FANC genes (monoallelic), such as and , do not cause FA but significantly increase cancer susceptibility sporadically in the general population. In this review, we discuss our current understanding of the functions of the FA pathway in the maintenance of genomic stability, and we present an overview of the prevalence and clinical relevance of somatic mutations in FA genes.
MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer
Cancer cells have an increased demand for energy sources to support accelerated rates of growth. When nutrients become limiting, cancer cells may switch to nonconventional energy sources that are mobilized through nutrient scavenging pathways involving autophagy and the lysosome. Thus, several cancers are highly reliant on constitutive activation of these pathways to degrade and recycle cellular materials. Here, we focus on the MiT/TFE family of transcription factors, which control transcriptional programs for autophagy and lysosome biogenesis and have emerged as regulators of energy metabolism in cancer. These new findings complement earlier reports that chromosomal translocations and amplifications involving the MiT/TFE genes contribute to the etiology and pathophysiology of renal cell carcinoma, melanoma, and sarcoma, suggesting pleiotropic roles for these factors in a wider array of cancers. Understanding the interplay between the oncogenic and stress-adaptive roles of MiT/TFE factors could shed light on fundamental mechanisms of cellular homeostasis and point to new strategies for cancer treatment.
Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor-Based Cellular Therapy
T cell reactivity to tumor-specific neoantigens can drive endogenous and therapeutically induced antitumor immunity. However, most tumor-specific neoantigens are unique to each patient (private) and targeting them requires personalized therapy. A smaller subset of neoantigens includes epitopes that span recurrent mutation hotspots, translocations, or gene fusions in oncogenic drivers and tumor suppressors, as well as epitopes that arise from viral oncogenic proteins. Such antigens are likely to be shared across patients (public), uniformly expressed within a tumor, and required for cancer cell survival and fitness. Although a limited number of these public neoantigens are naturally immunogenic, recent studies affirm their clinical utility. In this review, we highlight efforts to target mutant KRAS, mutant p53, and epitopes derived from oncogenic viruses using T cells engineered with off-the-shelf T cell receptors. We also discuss the challenges and strategies to achieving more effective T cell therapies, particularly in the context of solid tumors.
TGFβ: Signaling Blockade for Cancer Immunotherapy
Discovered over four decades ago, transforming growth factor β (TGFβ) is a potent pleiotropic cytokine that has context-dependent effects on most cell types. It acts as a tumor suppressor in some cancers and/or supports tumor progression and metastasis through its effects on the tumor stroma and immune microenvironment. In TGFβ-responsive tumors it can promote invasion and metastasis through epithelial-mesenchymal transformation, the appearance of cancer stem cell features, and resistance to many drug classes, including checkpoint blockade immunotherapies. Here we consider the biological activities of TGFβ action on different cells of relevance toward improving immunotherapy outcomes for patients, with a focus on the adaptive immune system. We discuss recent advances in the development of drugs that target the TGFβ signaling pathway in a tumor-specific or cell type-specific manner to improve the therapeutic window between response rates and adverse effects.