ACM COMPUTING SURVEYS

Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise
Wu J, Sheng VS, Zhang J, Li H, Dadakova T, Swisher CL, Cui Z and Zhao P
Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.
Multi-Robot Assembly Strategies and Metrics
Marvel JA, Bostelman R and Falco J
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.
Privacy in the Genomic Era
Naveed M, Ayday E, Clayton EW, Fellay J, Gunter CA, Hubaux JP, Malin BA and Wang X
Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) an association with traits and certain diseases, identification capability (e.g., forensics), and revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward.
A Survey of Physics-Based Attack Detection in Cyber-Physical Systems
Giraldo J, Urbina D, Cardenas A, Valente J, Faisal M, Ruths J, Tippenhauer NO, Sandberg H and Candell R
Monitoring the "physics" of cyber-physical systems to detect attacks is a growing area of research. In its basic form a security monitor creates time-series models of sensor readings for an industrial control system and identifies anomalies in these measurements in order to identify potentially false control commands or false sensor readings. In this paper, we review previous work on physics-based anomaly detection based on a unified taxonomy that allows us to identify limitations and unexplored challenges, and propose new solutions.