Cellular & Molecular Immunology

Critical and differential roles of eIF4A1 and eIF4A2 in B-cell development and function
Du Y, Xie J, Liu D, Zhao J, Chen P, He X, Hong P, Fu Y, Hong Y, Liu WH and Xiao C
Eukaryotic initiation factor 4 A (eIF4A) plays critical roles during translation initiation of cellular mRNAs by forming the cap-binding eIF4F complex, recruiting the 40S small ribosome subunit, and scanning the 5' untranslated region (5' UTR) for the start codon. eIF4A1 and eIF4A2, two isoforms of eIF4A, are highly conserved and exchange freely within eIF4F complexes. The understanding of their biological and molecular functions remains incomplete if not fragmentary. In this study, we showed that eIF4A1 and eIF4A2 exhibit different expression patterns during B-cell development and activation. Mouse genetic analyses showed that they play critical but differential roles during B-cell development and humoral immune responses. While eIF4A1 controls global protein synthesis, eIF4A2 regulates the biogenesis of 18S ribosomal RNA and the 40S ribosome subunit. This study demonstrates the distinct cellular and molecular functions of eIF4A1 and eIF4A2 and reveals a new role of eIF4A2 in controlling 40S ribosome biogenesis.
Targeting GSDME-mediated macrophage polarization for enhanced antitumor immunity in hepatocellular carcinoma
Chen S, Zhang P, Zhu G, Wang B, Cai J, Song L, Wan J, Yang Y, Du J, Cai Y, Zhou J, Fan J and Dai Z
Despite the notable efficacy of anti-PD1 therapy in the management of hepatocellular carcinoma (HCC) patients, resistance in most individuals necessitates additional investigation. For this study, we collected tumor tissues from nine HCC patients receiving anti-PD1 monotherapy and conducted RNA sequencing. These findings revealed significant upregulation of GSDME, which is predominantly expressed by tumor-associated macrophages (TAMs), in anti-PD1-resistant patients. Furthermore, patients with elevated levels of GSDME+ macrophages in HCC tissues presented a poorer prognosis. The analysis of single-cell sequencing data and flow cytometry revealed that the suppression of GSDME expression in nontumor cells resulted in a decrease in the proportion of M2-like macrophages within the tumor microenvironment (TIME) of HCC while concurrently augmenting the cytotoxicity of CD8 + T cells. The non-N-terminal fragment of GSDME within macrophages combines with PDPK1, thereby activating the PI3K-AKT pathway and facilitating M2-like polarization. The small-molecule Eliprodil inhibited the increase in PDPK1 phosphorylation mediated by GSDME site 1. The combination of Eliprodil and anti-PD1 was effective in the treatment of both spontaneous HCC in c-Myc + /+;Alb-Cre + /+ mice and in a hydrodynamic tail vein injection model, which provides a promising strategy for novel combined immunotherapy.
Targeting of TAMs: can we be more clever than cancer cells?
Kzhyshkowska J, Shen J and Larionova I
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Hepatocellular carcinoma-specific epigenetic checkpoints bidirectionally regulate the antitumor immunity of CD4 + T cells
Wang S, Meng L, Xu N, Chen H, Xiao Z, Lu D, Fan X, Xia L, Chen J, Zheng S, Wei Q, Wei X and Xu X
Hepatocellular carcinoma (HCC) is a highly malignant tumor with significant global health implications. The role of CD4 T cells, particularly conventional CD4 T cells (Tconvs), in HCC progression remains unexplored. Furthermore, epigenetic factors are crucial in immune regulation, yet their specific role in HCC-infiltrating Tconv cells remains elusive. This study elucidates the role of MATR3, an epigenetic regulator, in modulating Tconv activity and immune evasion within the HCC microenvironment. Reanalysis of the scRNA-seq data revealed that early activation of CD4 T cells is crucial for establishing an antitumor immune response. In vivo and in vitro experiments revealed that Tconv enhances cDC1-induced CD8 T-cell activation. Screening identified MATR3 as a critical regulator of Tconv function, which is necessary for antitumour activity but harmful when overexpressed. Excessive MATR3 expression exacerbates Tconv exhaustion and impairs function by recruiting the SWI/SNF complex to relax chromatin in the TOX promoter region, leading to aberrant transcriptional changes. In summary, MATR3 is an HCC-specific epigenetic checkpoint that bidirectionally regulates Tconv antitumour immunity, suggesting new therapeutic strategies targeting epigenetic regulators to enhance antitumour immunity in HCC.
Metabolic rewiring controlled by HIF-1α tunes IgA-producing B-cell differentiation and intestinal inflammation
Meng X, Asadi-Asadabad S, Cao S, Song R, Lin Z, Safhi M, Qin Y, Tcheumi Tactoum E, Taudte V, Ekici A, Mielenz D, Wirtz S, Schett G and Bozec A
Germinal centers where B cells undergo clonal expansion and antibody affinity maturation are hypoxic microenvironments. However, the function of hypoxia-inducible factor (HIF)-1α in immunoglobulin production remains incompletely characterized. Here, we demonstrated that B cells lacking HIF-1α exhibited significantly lower glycolytic metabolism and impaired IgA production. Loss of HIF-1α in B cells affects IgA-producing B-cell differentiation and exacerbates dextran sodium sulfate (DSS)-induced colitis. Conversely, promoting HIF-1α stabilization via a PHD inhibitor roxadustat enhances IgA class switching and alleviates intestinal inflammation. Mechanistically, HIF-1α facilitates IgA class switching through acetyl-coenzyme A (acetyl-CoA) accumulation, which is essential for histone H3K27 acetylation at the Sα region. Consequently, supplementation with acetyl-CoA improved defective IgA production in Hif1a-deficient B cells and limited experimental colitis. Collectively, these findings highlight the critical importance of HIF-1α in IgA class switching and the potential for targeting the HIF-1α-dependent metabolic‒epigenetic axis to treat inflammatory bowel diseases and other inflammatory disorders.
The TET3 inflammasome senses unique long HSV-1 proteins for virus particle budding from the nucleus
Liu Q, Li W, Qian Y, Wang C, Kong C, Li M, Sun L, Sun L, Pang Y, Jiang C, Wang S and Xia P
Inflammasomes play important roles in resisting infections caused by various pathogens. HSV-1 is a highly contagious virus among humans. The process by which HSV-1 particles bud from the nucleus is unique to herpes viruses, but the specific mechanism is still unclear. Here, we screened genes involved in HSV-1 replication. We found that TET3 plays an essential role in HSV-1 infection. TET3 recognizes the UL proteins of HSV-1 and, upon activation, can directly bind to caspase-1 to activate an ASC-independent inflammasome in the nucleus. The subsequent cleavage of GSDMD in the nucleus is crucial for the budding of HSV-1 particles from the nucleus. Inhibiting the perforation ability of GSDMD on the nuclear membrane can significantly reduce the maturation and spread of HSV-1. Our results may provide a new approach for the treatment of HSV-1 in the future.
MLKL-mediated endothelial necroptosis drives vascular damage and mortality in systemic inflammatory response syndrome
Wu X, Zhao X, Li F, Wang Y, Ou Y, Zhang H, Li X, Wu X, Wang L, Li M, Zhang Y, Liu J, Xing M, Liu H, Tan Y, Wang Y, Xie Y, Zhang H, Luo Y, Li H, Wang J, Sun L, Li Y and Zhang H
The hypersecretion of cytokines triggers life-threatening systemic inflammatory response syndrome (SIRS), leading to multiple organ dysfunction syndrome (MODS) and mortality. Although both coagulopathy and necroptosis have been identified as important factors in the pathogenesis of SIRS, the specific cell types that undergo necroptosis and the interrelationships between coagulopathy and necroptosis remain unclear. In this study, we utilized visualization analysis via intravital microscopy to demonstrate that both anticoagulant heparin and nonanticoagulant heparin (NAH) pretreatment protect mice against TNF-α-induced mortality in SIRS. Moreover, the deletion of Mlkl or Ripk3 resulted in decreased coagulation and reduced mortality in TNF-α-induced SIRS. These findings suggest that necroptosis plays a key role upstream of coagulation in SIRS-related mortality. Furthermore, using a genetic lineage tracing mouse model (Tie2-Cre;Rosa26-tdT), we tracked endothelial cells (ECs) and verified that EC necroptosis is responsible for the vascular damage observed in TNF-α-treated mice. Importantly, Mlkl deletion in vascular ECs in mice had a similar protective effect against lethal SIRS by blocking EC necroptosis to protect the integrity of the endothelium. Collectively, our findings demonstrated that RIPK3-MLKL-dependent necroptosis disrupted vascular integrity, resulting in coagulopathy and multiorgan failure, eventually leading to mortality in SIRS patients. These results highlight the importance of targeting vascular EC necroptosis for the development of effective treatments for SIRS patients.
Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells
Ohara D, Takeuchi Y and Hirota K
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
Silencing of SIRPα enhances the antitumor efficacy of CAR-M in solid tumors
Zhang H, Huo Y, Zheng W, Li P, Li H, Zhang L, Sa L, He Y, Zhao Z, Shi C, Shan L, Yang A and Wang T
The potential of macrophage-mediated phagocytosis as a cancer treatment is promising. Blocking the CD47-SIRPα interaction with a CD47-specific antibody significantly enhances macrophage phagocytosis. However, concerns regarding their toxicity to nontumor cells remain substantial. Here, we engineered chimeric antigen receptor macrophages (CAR-Ms) by fusing a humanized single-chain variable fragment with FcγRIIa and integrating short hairpin RNA to silence SIRPα, thereby disrupting the CD47-SIRPα signaling pathway. These modified CAR-shSIRPα-M cells exhibited an M1-like phenotype, superior phagocytic function, substantial cytotoxic effects on HER2-positive tumor cells, and the ability to eliminate patient-derived organoids. In vivo, CAR-M cells significantly inhibited tumor growth and prolonged survival in tumor-bearing mice. Notably, CAR-shSIRPα-M cells enhanced cytotoxic T-cell infiltration into tumors, thereby enhancing the antitumor response in both the humanized immune system mouse model and immunocompetent mice. Mechanistically, SIRPα inhibition activated inflammatory pathways and the cGAS-STING signaling cascade in CAR-M cells, leading to increased production of proinflammatory cytokines, reactive oxygen species, and nitric oxide, thereby enhancing their antitumor effects. These findings underscore the potential of SIRPα inhibition as a novel strategy to increase the antitumor efficacy of CAR-M cells in cancer immunotherapy, particularly against solid tumors.
Regulation of CD8+ T cells by lipid metabolism in cancer progression
Tang Y, Chen Z, Zuo Q and Kang Y
Dysregulation of lipid metabolism is a key characteristic of the tumor microenvironment, where tumor cells utilize lipids for proliferation, survival, metastasis, and evasion of immune surveillance. Lipid metabolism has become a critical regulator of CD8+ T-cell-mediated antitumor immunity, with excess lipids in the tumor microenvironment impeding CD8+ T-cell activities. Considering the limited efficacy of immunotherapy in many solid tumors, targeting lipid metabolism to enhance CD8+ T-cell effector functions could significantly improve immunotherapy outcomes. In this review, we examine recent findings on how lipid metabolic processes, including lipid uptake, synthesis, and oxidation, regulate CD8+ T cells within tumors. We also assessed the impact of different lipids on CD8+ T-cell-mediated antitumor immunity, with a particular focus on how lipid metabolism affects mitochondrial function in tumor-infiltrating CD8+ T cells. Furthermore, as cancer is a systemic disease, we examined systemic factors linking lipid metabolism to CD8+ T-cell effector function. Finally, we summarize current therapeutic approaches that target lipid metabolism to increase antitumor immunity and enhance immunotherapy. Understanding the molecular and functional interplay between lipid metabolism and CD8+ T cells offers promising therapeutic opportunities for cancer treatment.
Author Correction: Fatty acid metabolism constrains Th9 cell differentiation and antitumor immunity via the modulation of retinoic acid receptor signaling
Nakajima T, Kanno T, Ueda Y, Miyako K, Endo T, Yoshida S, Yokoyama S, Asou HK, Yamada K, Ikeda K, Togashi Y and Endo Y
Alternative mRNA polyadenylation regulates macrophage hyperactivation via the autophagy pathway
Chen Y, Chen B, Li J, Li H, Wang G, Cai X, Zhang Q, Liu X, Kan C, Wang L, Wang Z and Li HB
Macrophage hyperactivation is a hallmark of inflammatory diseases, yet the role of alternative polyadenylation (APA) of mRNAs in regulating innate immunity remains unclear. In this study, we focused on 3'UTR-APA and demonstrated that Nudt21, a crucial RNA-binding component of the 3'UTR-APA machinery, is significantly upregulated in various inflammatory conditions. By utilizing myeloid-specific Nudt21-deficient mice, we revealed a protective effect of Nudt21 depletion against colitis and severe hyperinflammation, primarily through diminished production of proinflammatory cytokines. Notably, Nudt21 regulates the mRNA stability of key autophagy-related genes, Map1lc3b and Ulk2, by mediating selective 3'UTR polyadenylation in activated macrophages. As a result, Nudt21-deficient macrophages display increased autophagic activity, which leads to reduced cytokine secretion. Our findings highlight an unexplored role of Nudt21-mediated 3'UTR-APA in modulating macrophage autophagy and offer new insights into the modulation of inflammation and disease progression.
Macrophage diversity in cancer dissemination and metastasis
Mantovani A, Marchesi F, Di Mitri D and Garlanda C
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
No more LAGging behind PD-1: uncovering the unique role of LAG-3 in T-cell exhaustion
Jo Y, Jin HS and Park Y
Immunotherapy for glioblastoma: current state, challenges, and future perspectives
Liu Y, Zhou F, Ali H, Lathia JD and Chen P
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
CD30 influences germinal center B-cell dynamics and the expansion of IgG1-switched B cells
Wang Y, Rambold U, Fiedler P, Babushku T, Tapken CL, Hoefig KP, Hofer TP, Adler H, Yildirim AÖ, Strobl LJ and Zimber-Strobl U
Initially, identified as a Hodgkin lymphoma marker, CD30 was subsequently detected on a subset of human B cells within and around germinal centers (GCs). While CD30 expression is typically restricted to a few B cells, expansion of CD30-expressing B cells occurs in certain immune disorders and during viral infections. The role of CD30 in B cells remains largely unclear. To address this gap in knowledge, we established a conditional CD30-knockin mouse strain. In these mice, B-cell-specific CD30 expression led to a normal B-cell phenotype in young mice, but most aged mice exhibited significant expansion of B cells, T cells and myeloid cells and increased percentages of GC B cells and IgG1-switched cells. This may be driven by the expansion of CD4 senescence-associated T cells and T follicular helper cells, which partially express CD30-L (CD153) and may stimulate CD30-expressing B cells. Inducing CD30 expression in antigen-activated B cells accelerates the GC reaction and augments plasma cell differentiation, possibly through the posttranscriptional upregulation of CXCR4. Furthermore, CD30 expression in GC B cells promoted the expansion of IgG1-switched cells, which displayed either a GC or memory-like B-cell phenotype, with abnormally high IgG1 levels compared with those in controls. These findings shed light on the role of CD30 signaling in GC B cells and suggest that elevated CD30 B-cell numbers lead to pathological lymphocyte activation and proliferation.
Ubiquitin regulatory X (UBX) domain-containing protein 6 is essential for autophagy induction and inflammation control in macrophages
Kim YJ, Lee SG, Park SY, Jeon SM, Kim SI, Kim KT, Roh T, Lee SH, Lee MJ, Lee J, Kim HJ, Lee SE, Kim JK, Heo JY, Kim IS, Park C, Paik S and Jo EK
Ubiquitin regulatory X (UBX) domain-containing protein 6 (UBXN6) is an essential cofactor for the activity of the valosin-containing protein p97, an adenosine triphosphatase associated with diverse cellular activities. Nonetheless, its role in cells of the innate immune system remains largely unexplored. In this study, we report that UBXN6 is upregulated in humans with sepsis and may serve as a pivotal regulator of inflammatory responses via the activation of autophagy. Notably, the upregulation of UBXN6 in sepsis patients was negatively correlated with inflammatory gene profiles but positively correlated with the expression of Forkhead box O3, an autophagy-driving transcription factor. Compared with those of control mice, the macrophages of mice subjected to myeloid cell-specific UBXN6 depletion exhibited exacerbated inflammation, increased mitochondrial oxidative stress, and greater impairment of autophagy and endoplasmic reticulum-associated degradation pathways. UBXN6-deficient macrophages also exhibited immunometabolic remodeling, characterized by a shift to aerobic glycolysis and elevated levels of branched-chain amino acids. These metabolic shifts amplify mammalian target of rapamycin pathway signaling, in turn reducing the nuclear translocation of the transcription factor EB and impairing lysosomal biogenesis. Together, these data reveal that UBXN6 serves as an activator of autophagy and regulates inflammation to maintain immune system suppression during human sepsis.
Kynurenine-AhR reduces T-cell infiltration and induces a delayed T-cell immune response by suppressing the STAT1-CXCL9/CXCL10 axis in tuberculosis
Liu X, Yang M, Xu P, Du M, Li S, Shi J, Li Q, Yuan J and Pang Y
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a critical global health issue that is complicated by the ability of the pathogen to delay the host's T-cell immune response. This delay in T-cell recruitment to the site of infection is a pivotal survival strategy for Mtb, allowing it to establish a persistent chronic infection. To investigate the underlying mechanisms, this study focused on Mtb's exploitation of host tryptophan metabolism. Mtb upregulates indoleamine 2,3-dioxygenase 1 (IDO1) in inflammatory macrophages, thereby increasing kynurenine (Kyn) production. Kyn then activates the aryl hydrocarbon receptor (AhR), leading to the upregulation of suppressor of cytokine signaling 3 and subsequent inhibition of the JAK-STAT1 signaling pathway. This results in reduced secretion of the chemokines CXCL9 and CXCL10, which are crucial for T-cell recruitment to the lungs. Supported by in vivo mouse models, our findings reveal that disrupting this pathway through AhR knockout significantly enhances T-cell infiltration and activity, thereby undermining Mtb-induced immunosuppression. In contrast, additional Kyn injection obviously inhibited T-cell infiltration and activity. These results highlight potential therapeutic targets of AhR and IDO1, offering new avenues for enhancing the host immune response against tuberculosis and guiding future vaccine development efforts.
Age-associated imbalance in immune cell regeneration varies across individuals and arises from a distinct subset of stem cells
Nogalska A, Eerdeng J, Akre S, Vergel-Rodriguez M, Lee Y, Bramlett C, Chowdhury AY, Wang B, Cess CG, Finley SD and Lu R
The age-associated decline in immunity manifests as imbalanced adaptive and innate immune cells, which originate from the aging of the stem cells that sustain their regeneration. Aging variation across individuals is well recognized, but its mechanism remains unclear. Here, we used high-throughput single-cell technologies to compare mice of the same chronological age that exhibited early or delayed immune aging phenotypes. We found that some hematopoietic stem cells (HSCs) in early aging mice upregulated genes related to aging, myeloid differentiation, and stem cell proliferation. Delayed aging was instead associated with genes involved in stem cell regulation and the response to external signals. These molecular changes align with shifts in HSC function. We found that the lineage biases of 30% to 40% of the HSC clones shifted with age. Moreover, their lineage biases shifted in opposite directions in mice exhibiting an early or delayed aging phenotype. In early aging mice, the HSC lineage bias shifted toward the myeloid lineage, driving the aging phenotype. In delayed aging mice, HSC lineage bias shifted toward the lymphoid lineage, effectively counteracting aging progression. Furthermore, the anti-aging HSC clones did not increase lymphoid production but instead decreased myeloid production. Additionally, we systematically quantified the frequency of various changes in HSC differentiation and their roles in driving the immune aging phenotype. Taken together, our findings suggest that temporal variation in the aging of immune cell regeneration among individuals primarily arises from differences in the myelopoiesis of a distinct subset of HSCs. Therefore, interventions to delay aging may be possible by targeting a subset of stem cells.
Glut3 promotes cellular O-GlcNAcylation as a distinctive tumor-supportive feature in Treg cells
Sharma A, Sharma G, Gao Z, Li K, Li M, Wu M, Kim CJ, Chen Y, Gautam A, Choi HB, Kim J, Kwak JM, Lam SM, Shui G, Paul S, Feng Y, Kang K, Im SH and Rudra D
Regulatory T cells (Tregs) establish dominant immune tolerance but obstruct tumor immune surveillance, warranting context-specific mechanistic insights into the functions of tumor-infiltrating Tregs (TIL-Tregs). We show that enhanced posttranslational O-linked N-acetylglucosamine modification (O-GlcNAcylation) of cellular factors is a molecular feature that promotes a tumor-specific gene expression signature and distinguishes TIL-Tregs from their systemic counterparts. We found that altered glucose utilization through the glucose transporter Glut3 is a major facilitator of this process. Treg-specific deletion of Glut3 abrogates tumor immune tolerance, while steady-state immune homeostasis remains largely unaffected in mice. Furthermore, by employing mouse tumor models and human clinical data, we identified the NF-κB subunit c-Rel as one such factor that, through Glut3-dependent O-GlcNAcylation, functionally orchestrates gene expression in Tregs at tumor sites. Together, these results not only identify immunometabolic alterations and molecular events contributing to fundamental aspects of Treg biology, specifically at tumor sites but also reveal tumor-specific cellular properties that can aid in the development of Treg-targeted cancer immunotherapies.
Specific ECM degradation potentiates the antitumor activity of CAR-T cells in solid tumors
Zheng R, Shen K, Liang S, Lyu Y, Zhang S, Dong H, Li Y, Han Y, Zhao X, Zhang Y, Wang P, Meng R, Bai S, Yang J, Lu G, Li J, Yang A, Zhang R and Yan B
Although major progress has been made in the use of chimeric antigen receptor (CAR)-T-cell therapy for hematological malignancies, this method is ineffective against solid tumors largely because of the limited infiltration, activation and proliferation of CAR-T cells. To overcome this issue, we engineered CAR-T cells with synthetic Notch (synNotch) receptors, which induce local tumor-specific secretion of extracellular matrix (ECM)-degrading enzymes at the tumor site. SynNotch CAR-T cells achieve precise ECM recognition and robustly kill targeted tumors, with synNotch-induced enzyme production enabling the degradation of components of the tumor ECM. In addition, this regulation strongly increased the infiltration of CAR-T cells and the clearance of solid tumors, resulting in tumor regression without toxicity in vivo. Notably, synNotch CAR-T cells also promoted the persistent activation of CAR-T cells in patient-derived tumor organoids. Thus, we constructed a synthetic T-cell system that increases the infiltration and antitumor function of CAR-T cells, providing a strategy for targeting ECM-rich solid tumors.