Phase Transformation in TiNi Nano-Wafers for Nanomechanical Devices with Shape Memory Effect
Recently, Ti-Ni based intermetallic alloys with shape memory effect (SME) have attracted much attention as promising functional materials for the development of record small nanomechanical tools, such as nanotweezers, for 3D manipulation of the real nano-objects. The problem of the fundamental restrictions on the minimal size of the nanomechanical device with SME for manipulation is connected with size effects which are observed in small samples of Ti-Ni based intermetallic alloys with thermoplastic structural phase transition from austenitic high symmetrical phase to low symmetrical martensitic phase. In the present work, by combining density functional theory and molecular dynamics modelling, austenite has been shown to be more stable than martensite in nanometer-sized TiNi wafers. In this case, the temperature of the martensitic transition asymptotically decreases with a decrease in the plate thickness h, and the complete suppression of the phase transition occurs for a plate with a thickness of 2 nm, which is in qualitative agreement with the experimental data. Moreover, the theoretical values obtained indicate the potential for even greater minimization of nanomechanical devices based on SME in TiNi.
Hybrid cube-in-cup nanoantenna: towards ordered photonics
The most significant goal of nanophotonics is the development of high-speed quantum emitting devices operating at ambient temperature. In this regard, plasmonic nanoparticles-on-mirror are potential candidates for designing high-speed photon sources. We introduce a novel hybrid nanoantenna (HNA) with CdSe/CdS colloidal quantum dots (QDs) based on a silver nanocube in a metal cup that presents a nanoparticle-in-cavity coupled with an emitters system. We use focused ion beam nanolithography to fabricate an ordered array of cups, which were then filled with colloidal nanoparticles using the most simple drop-casting and spin coating methods. The spectral and time-resolved studies of the samples with one or more nanocubes in the cup reveal a significant change in the radiation characteristics of QDs inside the nanoantenna. The Purcell effect causes an increase in the fluorescence decay rate (≥30) and an increase in the fluorescence intensity (≥3) of emitters in the HNA. Using the finite element method simulations, we have discovered that the proximity of the cups wall affects the oscillation modes of the gap plasmon, which, in turn, leads to changes in the electric field enhancement inside the nanoantenna gap. Additionally, substantial variations in the behavior of the gap plasmons at different polarizations of the exciting radiation have been revealed. The proposed nanoantenna can be useful in the development of plasmonic sensors, display pixels, and single-photon sources.
Shape memory effect nanotools for nano-creation: examples of nanowire-based devices with charge density waves
Nanotweezers based on the shape memory effect have been developed and tested. In combination with a commercial nanomanipulator, they allow 3D nanoscale operation controlled in a scanning electron microscope. Here we apply the tweezers for the fabrication of nanostructures based on whiskers of NbS, a quasi one-dimensional compound with room-temperature charge density wave (CDW). The nanowhiskers were separated without damage from the growth batch, an entangled array, and safely transferred to a substrate with a preliminary deposited Au film. The contacts were fabricated with Pt sputtering on top of the whisker and the film. The high degree of synchronization of the sliding CDW under a RF field with a frequency up to 600 MHz confirms the high quality of the contacts and of the sample structure after the manipulations. The proposed technique paves the way to novel type micro- and nanostructures fabrication and their various applications.
Evaluation of the Factor Structure of the Adolescent Stress Questionnaire in Chinese Adolescents
This study evaluated the psychometric properties of the Chinese version of Adolescent Stress Questionnaire () in a sample of Chinese middle school students ( = 420; 52.14% boys and 47.86% girls). Iterated principal factor analysis and multiple-group principal components cluster analysis supported a six-factor model with 42 items out of 58 items in the . The internal consistency was from .82 to .90. Girls reported lower stress levels in one subscale, Stress of romantic relationship, whereas no gender differences were found in the other five subscales. Compared with other studies of the in Westernized countries, the showed a distinct factor structure that may be explained by cross-cultural differences. Scales constructed from factor analysis related negatively to measures of mindfulness and positively to a measure of behavioral problems, suggesting that they were valid for Chinese adolescent stress. The study did not support a higher order construct of the . Altogether, our findings suggest that the is adequate for assessing stressors in Chinese adolescents.