Surface catalysed PCDD/F formation from precursors - high PCDF yield does not indicate de novo mechanism!
We report results on PCDD/F formation over iron (III) oxides catalysts for a mixture of 2-monochlorophenol (2-MCP) and 1,2-dichlorobenzene (1,2-DCBz) for both oxidation and pyrolysis. Competitive adsorption between chlorinated benzenes and chlorinated phenols affects the transformation of these precursors and plays a crucial role in the PCDD/F formation in mixed MCP/1,2-DCBz-feed streams. Comparing the integrated PCDD and PCDF yields, it becomes apparent that with decreasing 2-MCP content in the feed stream the PCDF yield first rises and then levels off, at ~0.4% for pyrolytic and at ~0.6% for oxidative conditions. Present results further confirm that the PCDD/PCDF-ratio cannot be used to validate the de novo pathway nor can it be used as an indicator of de novo synthesis in incinerators. In fact, the PCDD/PCDF-ratio is strongly dependent on the relative concentration of these two precursors in the reacting stream, i.e., chlorinated benzenes vs. chlorinated phenols.
Evaluation and development of tools to quantify the impacts of roadside vegetation barriers on near-road air quality
Traffic emissions are associated with the elevation of health risks of people living close to highways. Roadside vegetation barriers have the potential of reducing these risks by decreasing near-road air pollution concentrations. However, while we understand the mechanisms that determine the mitigation caused by solid barriers, we still have questions about how vegetative barriers affect dispersion. The US EPA conducted several field experiments to understand the effects of vegetation barriers on dispersion of pollutants near roadways (e.g., 2008 North Carolina study and 2014 California study) that indicate the reduction of near-road pollutant concentrations can be up to 30% due to the barrier effects. The results of these field studies are being used to develop and evaluate dispersion models that account for the effects of near-road vegetative barriers. These models can be used for evaluating the effectiveness of vegetation barriers as a potential mitigation strategy to reduce exposure to traffic-related pollutants and their associated adverse health effects. This paper presents the results of the analysis of the field studies and discusses dispersion models being used to describe the data in order to simulate the effects of near-road barriers and to develop recommendations for model improvements.
A new bottom-up emissions estimation approach for aircraft sources in support of air quality modelling for community-scale assessments around airports
Transportation infrastructure (including roadway traffic, ports, and airports) is critical to the nation's economy. With a growing economy, aircraft activity is expected to grow across the world. In the US, airport-related emissions, while generally small, are not an insignificant source of air pollution and related adverse health effects. However, currently there is a lack of tools that can easily be applied to study near-source pollution and explore the benefits of improvements to air quality and exposures. Screening-level air quality modelling is a useful tool for examining urban-scale air quality impacts of airport operations. Spatially-resolved aircraft emissions are needed for the screening-level modelling. In order to create spatially-resolved aircraft emissions, we developed a bottom-up emissions estimation methodology that includes data from a global chorded inventory dataset from the aviation environmental design tool (AEDT). The initial implementation of this method was performed for Los Angeles International Airport (LAX). This paper describes a new emissions estimation methodology for aircraft emissions in support of community-scale assessments of air quality around airports and presents an illustration of its application at the Los Angeles International Airport during the LAX 2011/2012 Air Quality Source Apportionment Study.