Application of Paper Strip Extraction in Combination with LC-MS-MS in Pharmacokinetics
Recent advances in sampling techniques in the pharmaceutical industry sparked significant interest in applying improvements to extraction methods for greater analyte detection and quantitation. In particular, the dried blood spot (DBS) sampling technique has numerous advantages compared to traditional methods such as liquid-liquid extraction, including the use of small sample volumes, less sample processing, and less exposure to toxic solvents (ether, methyl -butyl ether [MTBE], and dichloromethane). In this article, we discuss the adaptation of DBS technology to develop and validate a novel paper strip extraction method for the analysis of natural product metabolites in biological samples obtained from a human pharmacokinetic study of xanthohumol, a hop prenylflavonoid.
Rapid bacterial diagnostics via surface enhanced Raman microscopy
There is a continuing need to develop new techniques for the rapid and specific identification of bacterial pathogens in human body fluids especially given the increasing prevalence of drug resistant strains. Efforts to develop a surface enhanced Raman spectroscopy (SERS) based approach, which encompasses sample preparation, SERS substrates, portable Raman microscopy instrumentation and novel identification software, are described. The progress made in each of these areas in our laboratory is summarized and illustrated by a spiked infectious sample for urinary tract infection (UTI) diagnostics. SERS bacterial spectra exhibit both enhanced sensitivity and specificity allowing the development of an easy to use, portable, optical platform for pathogen detection and identification. SERS of bacterial cells is shown to offer not only reproducible molecular spectroscopic signatures for analytical applications in clinical diagnostics, but also is a new tool for studying biochemical activity in real time at the outer layers of these organisms.
Sample Preparation Problem Solving for Inductively Coupled Plasma-Mass Spectrometry with Liquid Introduction Systems I. Solubility, Chelation, and Memory Effects
This tutorial was adapted from the first half of a course presented at the 7th International Conference on Sector Field Inductively Coupled Plasma Mass Spectrometry in 2008 and the 2012 Winter Conference on Plasma Spectrochemistry on sample preparation for liquid introduction systems. Liquid introduction in general and flow injection specifically are the most widely used sample introduction methods for inductively coupled plasma-mass spectrometry. Nevertheless, problems persist in determination of analytes that are commonly investigated, as well as in specialty applications for those seldom considered by most analysts. Understanding the chemistry that is common to different groups of analytes permits the development of successful approaches to rinse-out and elimination of memory effects. This understanding also equips the analyst for development of successful elemental analytical approaches in the face of a broad spectrum of matrices and other analytical challenges, whether the sample is solid or liquid.
The Role of Naturally Occurring Stable Isotopes in Mass Spectrometry, Part III: Small Gas Molecule Calculations
In the third instalment of this tutorial, the authors explain the determination of the isotopic composition of a sample from a mass spectrometric measurement, and the methods of calculation as well as the units used. This tutorial outlines the practices in common usage, so that researchers new to this field can obtain a good understanding of the fundamentals involved.
The Role of Naturally Occurring Stable Isotopes in Mass Spectrometry, Part I: The Theory
In this tutorial, the authors explain how naturally occurring stable isotopes are contributing to experimentally determined mass spectra and how this information can be exploited in quantitative experiments, structural elucidation studies and tracer methodologies. The first instalment of this two part series focuses on the theoretical aspects of stable isotopes and the calculation of their distribution patterns.
The Role of Naturally Occurring Stable Isotopes in Mass Spectrometry, Part II: The Instrumentation
In the second instalment of this tutorial, the authors explain the instrumentation for measuring naturally occurring stable isotopes, specifically the magnetic sector mass spectrometer. This type of instrument remains unrivalled in its performance for isotope ratio mass spectrometry (IRMS) and the reader is reminded of its operation and its technical advantages for isotope measurements.